Cognitive Signal Processing Group

Monte Carlo Exploration for Active Binaural Localization

Christopher Schymura, Juan Diego Rios Grajales and Dorothea Kolossa Ruhr-Universität Bochum, Germany

Introduction

- This study introduces a novel framework for active binaural localization on a mobile robotic platform.
- A binaural localization model exploiting azimuth and distancerelated cues by means of particle filtering is proposed.
- Robot motion is controlled based on Monte Carlo exploration (MCE) [1] in a one-step look ahead scheme.

System Description

System Dynamics

$$oldsymbol{x}_k = egin{bmatrix} oldsymbol{x}_{\mathrm{S},k} \ oldsymbol{x}_{\mathrm{R},k} \end{bmatrix} = egin{bmatrix} oldsymbol{x}_{\mathrm{S},k-1} \ f(oldsymbol{x}_{\mathrm{R},k-1},oldsymbol{u}_k) \end{bmatrix} + oldsymbol{v}_k$$

Measurement Model

$$\boldsymbol{y}_k = \boldsymbol{W}^T \boldsymbol{\Phi}(\boldsymbol{x}_k) + \boldsymbol{n}_k$$

$oldsymbol{x}_k$: System state	$oldsymbol{s}_k$: Binaural signal	$oldsymbol{v}_k$: P
$oldsymbol{x}_{\mathrm{R},k}$: Robot pose	$oldsymbol{y}_k$: Binaural meas.	$oldsymbol{n}_k$: N
$\hat{oldsymbol{x}}_{\mathrm{S},k}$: Est. source position	\mathcal{X}_k : Particle set	W	: R
$oldsymbol{x}_{ ext{G}}$: Goal position	$ ilde{oldsymbol{x}}_{k}^{(i)}$: Predicted state	$oldsymbol{\Phi}(oldsymbol{x}_k)$: R
$oldsymbol{u}_k$: Control signal	$\widetilde{oldsymbol{y}}_k^{(i)}$: Predicted meas.		

State Estimation and Control

Particle Filter

- Estimation of state posterior $p(\boldsymbol{x}_{\mathrm{S,k}} | \boldsymbol{y}_{1:k}, \boldsymbol{u}_{1:k})$ using Gaussian mixture sigma point particle filter (GMSPPF) [2].
- Estimation uncertainty is modeled by entropy of the conditional mean state estimate $\hat{\boldsymbol{P}}_k = E\{(\boldsymbol{x}_{\mathrm{S},k} - \hat{\boldsymbol{x}}_{\mathrm{S},k})(\boldsymbol{x}_{\mathrm{S},k} - \hat{\boldsymbol{x}}_{\mathrm{S},k})^T\}$ at each filtering step:

 $H(\boldsymbol{x}_{\mathrm{S},k}) = \frac{1}{2} \log \left((2\pi e)^{D} \cdot |\hat{\boldsymbol{P}}_{k}| \right)$

MCE Algorithm

- Control policy for subsequent timestep obtained by MCE with a discrete set of N_u possible controls $\mathcal{U} = \{ \boldsymbol{u}_{k+1}^{(1)}, \ldots, \boldsymbol{u}_{k+1}^{(N_u)} \}$. • Trade-off parameter λ balances exploration and goal-directed
- movements.

Initialize: $\rho(\boldsymbol{u}_{k+1}^{(j)}) = 0 \ \forall j$ for i = 1 to N do Sample $\tilde{\boldsymbol{x}}_{\mathrm{S},k} \sim p(\boldsymbol{x}_{\mathrm{S},k} | \boldsymbol{y}_{1:k}, \boldsymbol{u}_{1:k})$ for j = 1 to N_u do $ilde{oldsymbol{x}}_k = \left[ilde{oldsymbol{x}}_{\mathrm{S},\,k} \; oldsymbol{x}_{\mathrm{R},\,k}
ight]^T$ Sample $\tilde{\boldsymbol{x}}_{k+1} \sim p(\tilde{\boldsymbol{x}}_{k+1} | \tilde{\boldsymbol{x}}_k, \boldsymbol{u}_{k+1}^{(j)})$ Sample $\tilde{\boldsymbol{y}}_{k+1} \sim p(\tilde{\boldsymbol{y}}_{k+1} | \tilde{\boldsymbol{x}}_{k+1})$ Compute $p(\boldsymbol{x}_{S,k+1} | \boldsymbol{y}_{1:k+1}, \boldsymbol{u}_{1:k+1})$ using GMSPPF $\rho(\boldsymbol{u}_{k+1}^{(j)}) = \rho(\boldsymbol{u}_{k+1}^{(j)}) - \lambda \|\boldsymbol{x}_{\mathrm{R},k+1} - \boldsymbol{x}_{\mathrm{G}}\|_{2} - (1-\lambda)H(\tilde{\boldsymbol{x}}_{\mathrm{S},k+1}^{(i)})$ end end Return $\boldsymbol{u}_{k+1} = \arg \max \rho(\boldsymbol{u}_{k+1}^{(j)})$ Algorithm 1: MCE for selecting the subsequent control input u_{k+1} .

Evaluation

Data

- challenge 2016 [3].
- dummy head from CIPIC database [4].

Binaural Simulation

- the image-source method [5].
- were evaluated.

Results

Table 1: Median localization errors in [m], Time-to-goal (TTG) in [s] and percentage of goal positions reached (GPR) achieved for different trade-off parameters in all acoustic conditions. Experiments were conducted using a measurement model based on azimuth and distance (AD) and a bearing-only measurement model (A) for comparing localization performance (TTG and GPR omitted in this case).

	_							
Model	λ	Anec.	250ms	500ms	750ms	Avg.	TTG	GPR
AD	0.00	0.58	0.72	1.63	2.82	1.44	-	-
AD	0.25	0.51	0.63	0.70	0.77	0.65	38.31	60.00
AD	0.50	0.63	0.67	1.05	1.29	0.91	14.49	98.00
AD	0.75	0.87	0.91	1.18	1.44	1.10	9.94	100.00
AD	1.00	1.09	1.08	1.36	1.37	1.23	9.44	100.00
Α	0.25	0.82	0.84	0.87	0.89	0.86	-	_

References

[1] S. Thrun, W. Burgard, and D. Fox, *Probabilistic Robotics*, The MIT Press, 2005.

- Acoustics, Speech, and Signal Processing, 2003.
- [3] "IEEE DCASE 2016 Challenge," http://www.cs.tut.fi/sgn/arg/dcase2016/.
- Journal of the Acoustical Society of America, vol. 65, no. 4, 1979.

The 42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5 – 9 March 2017, New Orleans, USA.

• Audio data: Speech and non-speech sounds from DCASE

• Head-related impulse responses: Recordings of KEMAR

• Online rendering of binaural room impulse responses using

• Fixed room dimensions (10m x 10m x 3m) with four different reverberation times (anechoic, 250ms, 500ms and 750ms)

• 50 simulations were conducted in each condition with randomly selected initial robot poses and goal positions.

[2] R. van der Merwe and E. Wan, "Gaussian mixture sigma-point particle filters for sequential probabilistic inference in dynamic state-space models," in IEEE International Conference on

[4] V. R. Algazi, R. O. Duda, D. M. Thompson, and C. Avendano, "The CIPIC HRTF database," in 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics, 2001. [5] J. B. Allen and D. A. Berkley, "Image method for efficiently simulating small room acoustics," The