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Figure: Application scenario: segmentation of auditory cues for multiple sound
sources at different angular positions w.r.t. the listener.
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Figure: Distribution of binaural cues and estimated relative azimuth angles for three
speech sources positioned at −60◦, 0◦ and 60◦ w.r.t. the look direction. 3 / 11
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Binaural Front-End
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See also: http://twoears.aipa.tu-berlin.de/doc/1.0/afe/
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Binaural Front-End

Mapping binaural cues to relative azimuth angles using polynomial regression:
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[
1 τkl · · · τPkl δkl · · · δPkl

]T
Training setup:
� Anechoic HRTF’s (KEMAR dummy head)
� 180 relative azimuth angles (1◦ increment)
� White noise as stimulus signal
� Individual models are trained for each filterbank
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Probabilistic Circular Clustering

The von Mises distribution:

VM(φ |µ, κ) = 1

2πI0(κ)
exp

{
κ cos(φ− µ)

}
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Mixture of von Mises distributions:

p(φ |π, µ, κ) =
K∑
k=1

πkVM(φ |µk, κk)
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Probabilistic Circular Clustering
Expectation maximization for circular clustering:

Inputs:
� Number of sound sources M
� Estimated target source azimuth φT
� Estimated azimuth angles for all T-F units as a vector φ ∈ RNS , NS = K · L

Initialization: Run circular k-means to initialize πm, µm, κm and γim
repeat

E-Step:
Compute responsibilities γim =

πmVM(φi |µm, κm)∑M
j=1 πjVM(φi |µj , κj)

M-Step:
Re-estimate circular means:

µm =

{
φT , if m = 1

atan2
(∑Ns

i=1 γim sin(φi),
∑Ns
i=1 γim cos(φi)

)
, otherwise

Re-estimate concentration parameters κm = A−1
(∑Ns

i=1 γim cos(φi−µm)∑Ns
i=1 γim

)
Re-estimate mixture proportions πm = 1

Ns

∑Ns
i=1 γim

Evaluate the log-likelihood L(φ |π, µ, κ) = log
(
p(φ |π, µ, κ)

)
until L(φ |π, µ, κ) converges
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Probabilistic Circular Clustering
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Figure: Starting point for EM algorithm (κi = 0 ∀ i).
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Figure: EM algorithm initialized with circular k-means.
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Probabilistic Circular Clustering
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Figure: EM algorithm after one iteration.
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Probabilistic Circular Clustering
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Figure: EM algorithm after five iterations.
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Probabilistic Circular Clustering
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Figure: EM algorithm after ten iterations.
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Probabilistic Circular Clustering

Soft-mask computation:
� The EM algorithm is used to estimate model parameters π, µ, κ.
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Probabilistic Circular Clustering

Soft-mask computation:
� The EM algorithm is used to estimate model parameters π, µ, κ.
� After EM has converged, weights can be computed for each T-F unit:

α
(m)
kl =

πmVM(φkl |µm, κm)∑M
i=1 πiVM(φkl |µi, κi)

� Hence, the soft-mask for the m-th source is specified as

Am =

α
(m)
11 · · · α

(m)
K1

...
. . .

...
α
(m)
1L · · · α

(m)
KL
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Evaluation and Outlook

Experimental setup:
� One target source (speech) at 0◦ relative azimuth
� Two maskers (white noise) at −60◦ and 60◦ relative azimuth and 0dB SNR
� Anechoic conditions (KEMAR HRTF’s from [Wierstorf et al. (2011)])
� Relative azimuth of the target source is assumed to be known, but

localization performance is artificially degraded: φT +N (0, σ2
φ)
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Evaluation and Outlook

Further steps:
� Extensive evaluation of the proposed framework with different sound types

and more challenging acoustic conditions.
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