### RUB

# Active Localization of Sound Sources with Binaural Models

42. Jahrestagung für Akustik (DAGA 2016)

*Christopher Schymura*, Juan Diego Rios Grajales, Dorothea Kolossa March 17, 2016

#### RUB

#### Introduction

Task: Active localization of sound sources in reverberant conditions



#### RUB

#### Introduction

Task: Active localization of sound sources in reverberant conditions





#### Introduction

## **Basic assumption for active localization:** Head rotations can help in resolving front-back ambiguities [Wallach (1940), Blauert(1997)].

#### Introduction

**Basic assumption for active localization:** Head rotations can help in resolving front-back ambiguities [Wallach (1940), Blauert(1997)].

Examples of computational models investigating this effect:

 Approaches exploiting discrete head movements without explicit state estimation [Schymura et al. (2014), May et al. (2015), Ma et al. (2015)].

#### Introduction

**Basic assumption for active localization:** Head rotations can help in resolving front-back ambiguities [Wallach (1940), Blauert(1997)].

Examples of computational models investigating this effect:

- Approaches exploiting discrete head movements without explicit state estimation [Schymura et al. (2014), May et al. (2015), Ma et al. (2015)].
- State-space approach with quasi-continuous head rotations, state estimation and closed loop feedback proposed in [Schymura et al. (2015)].

#### Introduction

**Basic assumption for active localization:** Head rotations can help in resolving front-back ambiguities [Wallach (1940), Blauert(1997)].

Examples of computational models investigating this effect:

- Approaches exploiting discrete head movements without explicit state estimation [Schymura et al. (2014), May et al. (2015), Ma et al. (2015)].
- State-space approach with quasi-continuous head rotations, state estimation and closed loop feedback proposed in [Schymura et al. (2015)].
  - Free-field conditions were considered exclusively
  - Deterministic measurement model (spherical head assumption)
  - Investigation of a single feedback control scheme

#### RUB

#### System overview



model equations

#### RUB

#### System overview



Controller



#### **Process model**

State space:

$$oldsymbol{x}_k = egin{bmatrix} \phi_k & \psi_k \end{bmatrix}^T, \quad oldsymbol{x}_0 = egin{bmatrix} 0 & rac{\pi}{2} \end{bmatrix}^T$$



#### **Process model**

State space:

$$\boldsymbol{x}_k = \begin{bmatrix} \phi_k & \psi_k \end{bmatrix}^T, \quad \boldsymbol{x}_0 = \begin{bmatrix} 0 & \frac{\pi}{2} \end{bmatrix}^T$$

System dynamics:

$$f(\boldsymbol{x}_{k-1}, u_k) = \begin{bmatrix} \phi_{k-1} \\ \operatorname{sat}(\psi_{k-1} + T\dot{\psi}_{\max}u_k, \psi_1, \psi_2) \end{bmatrix}$$



#### **Process model**

State space:

$$oldsymbol{x}_k = egin{bmatrix} \phi_k & \psi_k \end{bmatrix}^T, \quad oldsymbol{x}_0 = egin{bmatrix} 0 & rac{\pi}{2} \end{bmatrix}^T$$

System dynamics:

$$f(\boldsymbol{x}_{k-1}, u_k) = \begin{bmatrix} \phi_{k-1} \\ \operatorname{sat}(\psi_{k-1} + T\dot{\psi}_{\max}u_k, \psi_1, \psi_2) \end{bmatrix}$$

$$\operatorname{sat}(x, \psi_1, \psi_2) = \begin{cases} \psi_1, & \text{if } x < \psi_1 \\ x, & \text{if } \psi_1 < x < \psi_2 \\ \psi_2, & \text{if } x > \psi_2 \end{cases}$$

#### RUB

#### **Binaural Front-End**



See also: http://twoears.aipa.tu-berlin.de/doc/1.0/afe/



#### Measurement model

Measurement vector:

$$\boldsymbol{y}_{k} = \begin{bmatrix} \tau_{k} & \delta_{k} & \psi_{k} \end{bmatrix}^{T}, \quad \tau_{k} = \sum_{l=1}^{L} \tau_{kl}, \quad \delta_{k} = \sum_{l=1}^{L} \delta_{kl}$$

#### RUB

#### Measurement model

Measurement vector:

$$\boldsymbol{y}_{k} = \begin{bmatrix} \tau_{k} & \delta_{k} & \psi_{k} \end{bmatrix}^{T}, \quad \tau_{k} = \sum_{l=1}^{L} \tau_{kl}, \quad \delta_{k} = \sum_{l=1}^{L} \delta_{kl}$$

Measurement model:

$$g(\boldsymbol{x}_k) = \begin{bmatrix} w_0^{\tau} + \sum_{n=1}^N w_n^{\tau} \sin\left(n \cdot (\phi_k - \psi_k)\right) \\ w_0^{\delta} + \sum_{n=1}^N w_n^{\delta} \sin\left(n \cdot (\phi_k - \psi_k)\right) \\ \psi_k \end{bmatrix}$$

#### Measurement model

Training of the measurement model was conducted using anechoic HRTFs of the KEMAR dummy head [Wierstorf et al. (2011)]:



#### Head rotation strategies

Evaluation of four different approaches:

- No head rotation:  $u_k = 0 \forall k$
- Smooth posterior mean [Schymura et al. (2015)]:

$$u_k = \left(\frac{|\hat{\phi}_k - \hat{\psi}_k|}{1 + |\hat{\phi}_k - \hat{\psi}_k|}\right) \operatorname{sgn}\left(\hat{\phi}_k - \hat{\psi}_k\right)$$

■ Proportional controller:

$$u_k = \operatorname{sat}\left(\kappa_{\mathrm{p}}(\hat{\phi}_k - \hat{\psi}_k), -1, 1\right)$$

Extended proportional controller:

$$u_k = \begin{cases} \operatorname{sat}\left(\frac{\operatorname{tr}(\hat{\boldsymbol{P}}_k)}{\operatorname{tr}(\boldsymbol{P}_0)}(\hat{\phi}_k - \hat{\psi}_k), -1, 1\right) & \text{if } (k \mod K_{\operatorname{FB}}) < \frac{K_{\operatorname{FB}}}{2} \\ 0 & \text{otherwise} \end{cases}$$

#### **Evaluation**



**Evaluation scenarios:** Simulated rooms with 3 and 6 fixed source positions, using BRIRs introduced in [Ma et al., (2015)].



Room "Spirit",  $T_{60} \approx 0.5\,\mathrm{s}$ 

Room "Auditorium 3",  $T_{60} \approx 0.7 \, {
m s}$ 

#### **Evaluation**



#### **Evaluation results:** Errors are denoted as circular RMSE in degrees.

|              | $\phi_{\rm S}$ [°] | $d_{ m S}$ [m] | NoRot. | SPM   | PC    | EPC   |
|--------------|--------------------|----------------|--------|-------|-------|-------|
| Auditorium 3 | 90.00              | 3.97           | 3.38   | 7,00  | 7.04  | 3.60  |
|              | 38.49              | 5.50           | 42.40  | 8.60  | 8.34  | 8.75  |
|              | -41.40             | 2.67           | 127.71 | 31.84 | 30.70 | 30.43 |
|              | 90.00              | 1.80           | 2.67   | 3.90  | 3.92  | 2.50  |
|              | 120.00             | 1.80           | 8.85   | 4.26  | 4.28  | 2.77  |
|              | 60.00              | 1.80           | 13.30  | 6.63  | 6.61  | 5.45  |
| Spirit       | 120.00             | 2.00           | 16.83  | 17.92 | 18.84 | 8.07  |
|              | 90.00              | 2.00           | 4.91   | 13.22 | 13.37 | 5.15  |
|              | 60.00              | 2.00           | 27.32  | 20.89 | 20.87 | 12.31 |
| Average      | -                  | -              | 27.49  | 12.70 | 12.66 | 8.78  |



#### Summary

An extension of the binaural model introduced in [Schymura et al., (2015)] was proposed:

- A flexible measurement model using supervised training with individual sets of HRTFs was introduced.
- Two novel head rotation strategies based on proportional control schemes were investigated in reverberant conditions.
- Future extensions of the model may aim at introducing additional degrees of freedom (e.g. translatory movements).



#### Summary

An extension of the binaural model introduced in [Schymura et al., (2015)] was proposed:

- A flexible measurement model using supervised training with individual sets of HRTFs was introduced.
- Two novel head rotation strategies based on proportional control schemes were investigated in reverberant conditions.
- Future extensions of the model may aim at introducing additional degrees of freedom (e.g. translatory movements).

#### Thank you for your attention!

This research has been supported by EU FET grant Two!Ears, ICT-618075.