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Introduction

Task: Active localization of sound sources in reverberant conditions
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Introduction

Basic assumption for active localization: Head rotations can help in

resolving front-back ambiguities [Wallach (1940), Blauert(1997)].
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• Free-field conditions were considered exclusively
• Deterministic measurement model (spherical head assumption)
• Investigation of a single feedback control scheme
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System overview

xk = f(xk−1, uk) + vk
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Process model

State space:

xk =
[
φk ψk

]T
, x0 =

[
0 π

2

]T
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f(xk−1, uk) =

[
φk−1

sat(ψk−1 + T ψ̇maxuk, ψ1, ψ2)

]

sat(x, ψ1, ψ2) =


ψ1, if x < ψ1

x, if ψ1 < x < ψ2

ψ2, if x > ψ2
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Binaural Front-End

...

g1(n)

gL(n)

...

g1(n)
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•
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•

...
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See also: http://twoears.aipa.tu-berlin.de/doc/1.0/afe/
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Measurement model

Measurement vector:

yk =
[
τk δk ψk

]T
, τk =

L∑
l=1

τkl, δk =

L∑
l=1

δkl
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Measurement model

Measurement vector:

yk =
[
τk δk ψk

]T
, τk =

L∑
l=1

τkl, δk =

L∑
l=1

δkl

Measurement model:

g(xk) =



wτ0 +
∑N
n=1 w

τ
n sin

(
n · (φk − ψk)

)
wδ0 +

∑N
n=1 w

δ
n sin

(
n · (φk − ψk)

)
ψk
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Measurement model

Training of the measurement model was conducted using anechoic HRTFs of

the KEMAR dummy head [Wierstorf et al. (2011)]:
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Head rotation strategies

Evaluation of four different approaches:

� No head rotation: uk = 0∀k
� Smooth posterior mean [Schymura et al. (2015)]:

uk =
( |φ̂k − ψ̂k|
1 + |φ̂k − ψ̂k|

)
sgn
(
φ̂k − ψ̂k

)
� Proportional controller:

uk = sat
(
κp(φ̂k − ψ̂k), −1, 1

)
� Extended proportional controller:

uk =

sat
(

tr(P̂ k)
tr(P 0)

(φ̂k − ψ̂k), −1, 1
)

if (kmodKFB) <
KFB

2

0 otherwise
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Evaluation

Evaluation scenarios: Simulated rooms with 3 and 6 fixed source positions,

using BRIRs introduced in [Ma et al., (2015)].
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Room “Auditorium 3”, T60 ≈ 0.7 s
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Evaluation

Evaluation results: Errors are denoted as circular RMSE in degrees.

φS [◦] dS [m] NoRot. SPM PC EPC

Auditorium 3

90.00 3.97 3.38 7,00 7.04 3.60

38.49 5.50 42.40 8.60 8.34 8.75

-41.40 2.67 127.71 31.84 30.70 30.43

90.00 1.80 2.67 3.90 3.92 2.50

120.00 1.80 8.85 4.26 4.28 2.77

60.00 1.80 13.30 6.63 6.61 5.45

Spirit

120.00 2.00 16.83 17.92 18.84 8.07

90.00 2.00 4.91 13.22 13.37 5.15

60.00 2.00 27.32 20.89 20.87 12.31

Average - - 27.49 12.70 12.66 8.78
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Summary

An extension of the binaural model introduced in [Schymura et al., (2015)]

was proposed:

� A flexible measurement model using supervised training with individual

sets of HRTFs was introduced.

� Two novel head rotation strategies based on proportional control schemes

were investigated in reverberant conditions.

� Future extensions of the model may aim at introducing additional degrees

of freedom (e.g. translatory movements).
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