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Problem statement
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A deeper look into sound event localization
Source activity and position can change over time and multiple sources can be active simultaneously
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Proposed framework: ADRENALINE1

A sequence-to-sequence model with attentions is a suitable framework to handle temporal context
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1
Attention-based Deep Recurrent Neural-Network for Localizing Sound Events
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Datasets and baseline models for evaluation
Experimental evaluation covers multi-source SEL datasets with various acoustic conditions

I A subset from the TUT Sound Events 20182 corpus was used for evaluation:

I ANSYN: Anechoic and synthetic impulse responses
I RESYN: Reverberant and synthetic impulse responses
I REAL: Reverberant and real-life impulse responses

I Each subset contains 3 cross-validation splits with 240 files for training and 60

files for validation. Each file represents Ambisonic audio signals of 30 s duration.

I The signals are composed of up to 3 simultaneously active sound sources at

different locations, taken from 11 different sound event classes.

I ADRENALINE uses the same CNN-based feature extraction initially proposed

for SELDNet2, which are also used as baseline methods here.

2
A. Adavanne, J. Politis, J. Nikunen and T. Virtanen, “Sound event localization and detection of overlapping sources using convolutional

recurrent neural networks”, IEEE JSTSP, 2019
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Results
ADRENALINE outperforms baseline methods in terms of DoA error and yields comparable frame recall
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Frame recall ANSYN RESYN REAL

CNN 87.48 71.91 72.07

SELDNet(m) 85.78 72.46 69.63

ADRENALINE 84.83 71.18 72.08
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What can the attentions tell us?
Reverberant environments force the model to utilize larger temporal context for SEL
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Conclusions

I An attention-based sequence-to-sequence model (ADRENALINE) was

proposed for multi-source sound event localization tasks.

I The proposed framework outperformed the baseline models in

terms of DoA error and yielded comparable frame recall.

I Attentions enable the model to adapt the utilized temporal

context size depending on the acoustic environment.

Thank you for your attention!
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