Exploiting Attention-based Sequence-to-Sequence Architectures for Sound Event Localization

EUSIPCO 2020

Christopher Schymura, Tsubasa Ochiai, Marc Delcroix, Keisuke Kinoshita, Tomohiro Nakatani, Shoko Araki and Dorothea Kolossa

January 18-22 2021

A deeper look into sound event localization

Source activity and position can change over time and multiple sources can be active simultaneously

Proposed framework: ADRENALINE¹

A sequence-to-sequence model with attentions is a suitable framework to handle temporal context

 $^1\mbox{Attention-based}$ Deep Recurrent Neural-Network for Localizing Sound Events

- ► A subset from the **TUT Sound Events 2018**² corpus was used for evaluation:
 - ANSYN: Anechoic and synthetic impulse responses
 - RESYN: Reverberant and synthetic impulse responses
 - ▶ REAL: Reverberant and real-life impulse responses

²A. Adavanne, J. Politis, J. Nikunen and T. Virtanen, "Sound event localization and detection of overlapping sources using convolutional recurrent neural networks", IEEE JSTSP, 2019

- ► A subset from the **TUT Sound Events 2018**² corpus was used for evaluation:
 - ANSYN: Anechoic and synthetic impulse responses
 - RESYN: Reverberant and synthetic impulse responses
 - ▶ REAL: Reverberant and real-life impulse responses
- Each subset contains 3 cross-validation splits with 240 files for training and 60 files for validation. Each file represents Ambisonic audio signals of 30 s duration.

²A. Adavanne, J. Politis, J. Nikunen and T. Virtanen, "Sound event localization and detection of overlapping sources using convolutional recurrent neural networks", IEEE JSTSP, 2019

- ► A subset from the **TUT Sound Events 2018**² corpus was used for evaluation:
 - ANSYN: Anechoic and synthetic impulse responses
 - RESYN: Reverberant and synthetic impulse responses
 - ▶ REAL: Reverberant and real-life impulse responses
- Each subset contains 3 cross-validation splits with 240 files for training and 60 files for validation. Each file represents Ambisonic audio signals of 30 s duration.
- The signals are composed of up to 3 simultaneously active sound sources at different locations, taken from 11 different sound event classes.

²A. Adavanne, J. Politis, J. Nikunen and T. Virtanen, "Sound event localization and detection of overlapping sources using convolutional recurrent neural networks", IEEE JSTSP, 2019

- ► A subset from the **TUT Sound Events 2018**² corpus was used for evaluation:
 - ANSYN: Anechoic and synthetic impulse responses
 - RESYN: Reverberant and synthetic impulse responses
 - ▶ REAL: Reverberant and real-life impulse responses
- Each subset contains 3 cross-validation splits with 240 files for training and 60 files for validation. Each file represents Ambisonic audio signals of 30 s duration.
- The signals are composed of up to 3 simultaneously active sound sources at different locations, taken from 11 different sound event classes.
- ADRENALINE uses the same CNN-based feature extraction initially proposed for SELDNet², which are also used as baseline methods here.

²A. Adavanne, J. Politis, J. Nikunen and T. Virtanen, "Sound event localization and detection of overlapping sources using convolutional recurrent neural networks", IEEE JSTSP, 2019

Results

ADRENALINE outperforms baseline methods in terms of DoA error and yields comparable frame recall

What can the attentions tell us?

Reverberant environments force the model to utilize larger temporal context for SEL

An attention-based sequence-to-sequence model (ADRENALINE) was proposed for multi-source sound event localization tasks.

- An attention-based sequence-to-sequence model (ADRENALINE) was proposed for multi-source sound event localization tasks.
- The proposed framework outperformed the baseline models in terms of DoA error and yielded comparable frame recall.

- An attention-based sequence-to-sequence model (ADRENALINE) was proposed for multi-source sound event localization tasks.
- The proposed framework outperformed the baseline models in terms of DoA error and yielded comparable frame recall.
- Attentions enable the model to adapt the utilized temporal context size depending on the acoustic environment.

- An attention-based sequence-to-sequence model (ADRENALINE) was proposed for multi-source sound event localization tasks.
- The proposed framework outperformed the baseline models in terms of DoA error and yielded comparable frame recall.
- Attentions enable the model to adapt the utilized temporal context size depending on the acoustic environment.

Thank you for your attention!