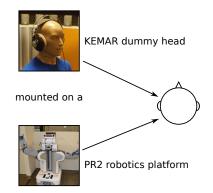
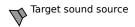
RUB


Binaural Sound Source Localisation using a Bayesian-network-based Blackboard System and Hypothesis-driven Feedback

Christopher Schymura, Thomas Walther, Dorothea Kolossa Ruhr-Universität Bochum

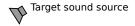
Ning Ma, Guy J. Brown University of Sheffield

October 17, 2014



INSTITUTE OF COMMUNICATION ACOUSTICS

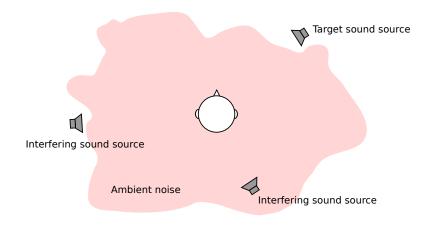
RUHR-UNIVERSITÄT BOCHUM

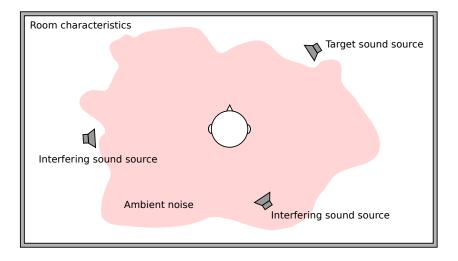


INSTITUTE OF COMMUNICATION ACOUSTICS

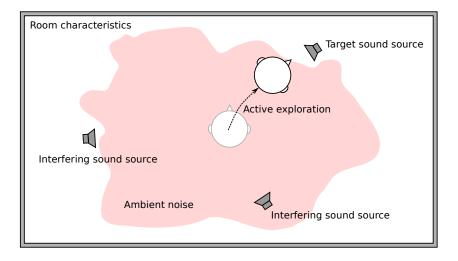
RUHR-UNIVERSITÄT BOCHUM

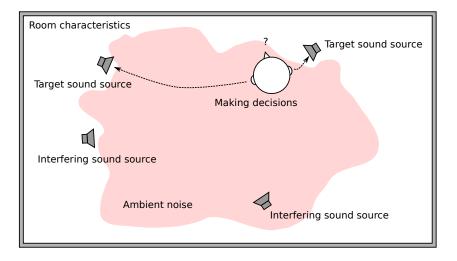
The Two!Ears project


Interfering sound source


INSTITUTE OF COMMUNICATION ACOUSTICS

RUHR-UNIVERSITÄT BOCHUM




RUB

RUB

RUB

The Two!Ears project

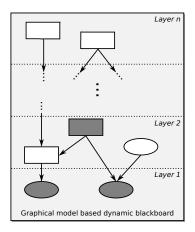
The Two!Ears project

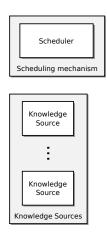
How can this be achieved?

 Build an internal representation of the world that is currently perceived, referred to as the ,,internal world model"

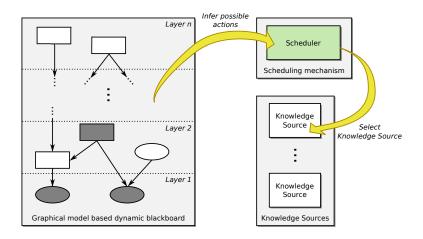
The Two!Ears project

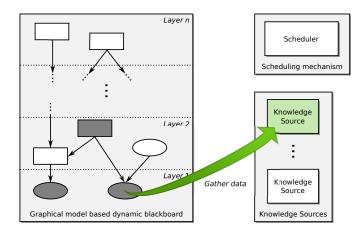
- Build an internal representation of the world that is currently perceived, referred to as the ,,internal world model"
- Use multimodal information (auditory, audiovisual and sensorimotor cues) to continuously update the internal world model (bottom-up processing)

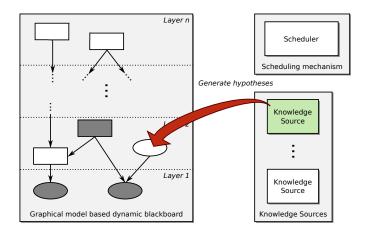

The Two!Ears project

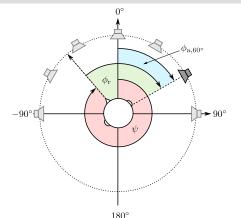

- Build an internal representation of the world that is currently perceived, referred to as the ,,internal world model"
- Use multimodal information (auditory, audiovisual and sensorimotor cues) to continuously update the internal world model (bottom-up processing)
- Generate hypotheses from the model and confirm or reject them by gathering new information by means of top-down feedback

The Two!Ears project

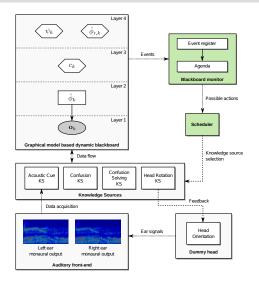

- Build an internal representation of the world that is currently perceived, referred to as the "internal world model"
- Use multimodal information (auditory, audiovisual and sensorimotor cues) to continuously update the internal world model (bottom-up processing)
- Generate hypotheses from the model and confirm or reject them by gathering new information by means of top-down feedback
- Use the results to make appropriate decisions that incrementally lead to the accomplishment of a given task







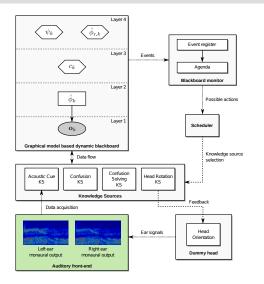
Proof of concept: Task



- 170 utterances of speech from the GRID corpus [1] for testing
 Free-field conditions (with optional ambient noise)
- Head rotations possible

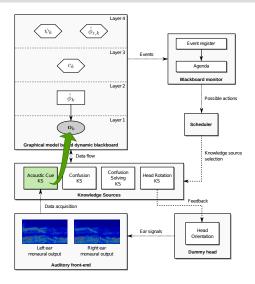
 M. Cooke, J. Barker, S. Cunningham, X. Shao: An audio-visual corpus for speech perception and automatic speech recognition. Journal of the Acoustical Society of America, 2006

Proof of concept: System architecture



Computational framework:

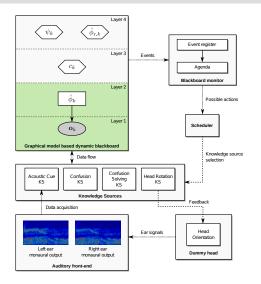
- Event-based processing
- Blackboard monitor keeps track of events that have been generated by the blackboard
- Scheduler selects possible actions according to the triggered events


Proof of concept: System architecture

Auditory front-end:

- Gammatone filterbank
- Simple IHC model (half-wave rectification and square-root compression)

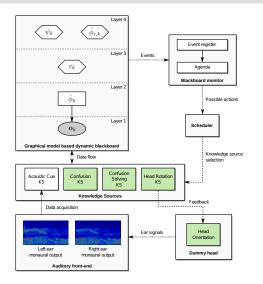
Proof of concept: System architecture



Auditory cues: • ITDs $\tau_{k,m}$ and • ILDs $\delta_{k,m}$, with $\tau_{k,1}$ $oldsymbol{o}_k = \left[egin{array}{c} ec{ au}_{k,M} \ \delta_{k,1} \ ec{ au} \end{array}
ight]$ $\delta_{k,M}$

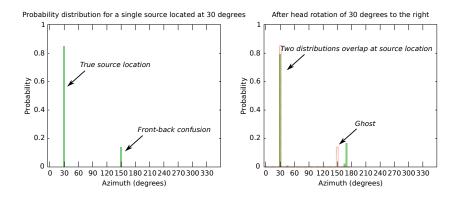
- k: Frame index
- \blacksquare m: Channel index
- *M*: Number of filterbank channels

Proof of concept: System architecture

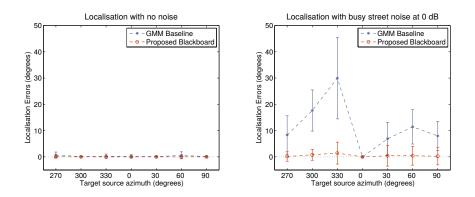


Graphical model for localisation:

- Gaussian-mixture models (GMMs)
- Trained on 340 utterances with 72 different angles (5° increment)
- Training with clean conditions only


Proof of concept: System architecture

Feedback path:


- Head rotations to reduce front/back ambiguities
- Feedback is triggered after evaluating the probabilistic output of the GMMs

Proof of concept: Feedback

Results

Conclusions and future work

 Blackboard Systems provide a flexible computational framework for tasks related to Auditory Scene Analysis

Conclusions and future work

- Blackboard Systems provide a flexible computational framework for tasks related to Auditory Scene Analysis
- The integration of Graphical Models allows the generation of "world models" as probabilistic expressions

- Blackboard Systems provide a flexible computational framework for tasks related to Auditory Scene Analysis
- The integration of Graphical Models allows the generation of "world models" as probabilistic expressions
- This allows the system to postulate and test hypotheses about the current situation and make decisions accordingly

- Blackboard Systems provide a flexible computational framework for tasks related to Auditory Scene Analysis
- The integration of Graphical Models allows the generation of "world models" as probabilistic expressions
- This allows the system to postulate and test hypotheses about the current situation and make decisions accordingly

What's next?

 Further improvement of the localisation performance via multiconditional training (ongoing work)

- Blackboard Systems provide a flexible computational framework for tasks related to Auditory Scene Analysis
- The integration of Graphical Models allows the generation of ,,world models" as probabilistic expressions
- This allows the system to postulate and test hypotheses about the current situation and make decisions accordingly

What's next?

- Further improvement of the localisation performance via multiconditional training (ongoing work)
- Integration of dynamic state-space models for robust tracking of multiple sources (ongoing work)

- Blackboard Systems provide a flexible computational framework for tasks related to Auditory Scene Analysis
- The integration of Graphical Models allows the generation of "world models" as probabilistic expressions
- This allows the system to postulate and test hypotheses about the current situation and make decisions accordingly

What's next?

- Further improvement of the localisation performance via multiconditional training (ongoing work)
- Integration of dynamic state-space models for robust tracking of multiple sources (ongoing work)
- Extension of the system to simulataneously perform sound source classification (already working)

- Blackboard Systems provide a flexible computational framework for tasks related to Auditory Scene Analysis
- The integration of Graphical Models allows the generation of "world models" as probabilistic expressions
- This allows the system to postulate and test hypotheses about the current situation and make decisions accordingly

What's next?

- Further improvement of the localisation performance via multiconditional training (ongoing work)
- Integration of dynamic state-space models for robust tracking of multiple sources (ongoing work)
- Extension of the system to simulataneously perform sound source classification (already working)
- Investigation of additional possibilities for including feedback

Questions?