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Audiovisual speaker tracking
Prediction step

System dynamics:

xk = f (xk−1) + vk, vk = N (0, Q)

xk−1xk

x̂k|k−1

p(xk |YA,k−1, YV,k−1) =

∫
p(xk | xk−1)︸ ︷︷ ︸
Dynamic model

p(xk−1 |YA,k−1, YV,k−1)︸ ︷︷ ︸
Prior

dxk−1
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Audiovisual speaker tracking
Observation

Observation model:

yk =
[
yA,k yV,k

]T
= h (xk) + wk

wk = N (0, R), R =

[
RAA RAV

RVA RVV

]
xk

x̂k|k−1

yV,k

yA,k
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Audiovisual speaker tracking
Update step (standard Kalman filter)

Observation model:

yk =
[
yA,k yV,k

]T
= h (xk) + wk

wk = N (0, R), R =

[
RAA RAV

RVA RVV

]
xk

x̂EKF,k

yV,k

yA,k

p(xk |YA,k, YV,k) ∝ p(xk |YA,k−1, YV,k−1) p(yA,k, yV,k | xk)︸ ︷︷ ︸
Sensor model
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Audiovisual speaker tracking
Update step (Kalman filter with dynamic stream weights1)

Observation model:

yA,k = hA(xk) + wA,k, wA,k = N (0, RAA)

yV,k = hV(xk) + wV,k, wV,k = N (0, RVV)

xk

x̂DSW,k
x̂EKF,k

yV,k

yA,k

p(xk |YA,k, YV,k) ∝ p(xk |YA,k−1, YV,k−1) p(yA,k | xk)
λk︸ ︷︷ ︸

Acoustic model

p(yV,k | xk)
1−λk︸ ︷︷ ︸

Visual model

1C. Schymura et al.: Extending linear dynamical systems with dynamic stream weights for audiovisual speaker localization, IWAENC, 2018
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Inference
Extended Kalman filter approach: first-order Taylor series expansion

f (xk−1) ≈ f (x̂k−1) + F(x̂k−1)(xk−1 − x̂k−1)

⇒ p(xk | xk−1) = N
(

xk | f (x̂k−1) + F(x̂k−1)(xk−1 − x̂k−1), Q
)

⇒ p(xk |YA,k−1, YV,k−1) = N
(

xk | x̂k−1, Σ̂k−1

)
Prediction step (identical to standard EKF)

x̂k|k−1 = f (x̂k−1)

Σ̂k|k−1 = Fk−1Σ̂k−1FT
k−1 + Q, Fk−1 ≡ F(x̂k−1) =

∂f (xk−1)

∂xk−1

∣∣∣
xk−1=x̂k−1

7 / 13



Inference
Extended Kalman filter approach: first-order Taylor series expansion

f (xk−1) ≈ f (x̂k−1) + F(x̂k−1)(xk−1 − x̂k−1)

⇒ p(xk | xk−1) = N
(

xk | f (x̂k−1) + F(x̂k−1)(xk−1 − x̂k−1), Q
)

⇒ p(xk |YA,k−1, YV,k−1) = N
(

xk | x̂k−1, Σ̂k−1

)
Prediction step (identical to standard EKF)

x̂k|k−1 = f (x̂k−1)

Σ̂k|k−1 = Fk−1Σ̂k−1FT
k−1 + Q, Fk−1 ≡ F(x̂k−1) =

∂f (xk−1)

∂xk−1

∣∣∣
xk−1=x̂k−1

7 / 13



Inference
Extended Kalman filter approach: first-order Taylor series expansion

f (xk−1) ≈ f (x̂k−1) + F(x̂k−1)(xk−1 − x̂k−1)

⇒ p(xk | xk−1) = N
(

xk | f (x̂k−1) + F(x̂k−1)(xk−1 − x̂k−1), Q
)

⇒ p(xk |YA,k−1, YV,k−1) = N
(

xk | x̂k−1, Σ̂k−1

)
Prediction step (identical to standard EKF)

x̂k|k−1 = f (x̂k−1)

Σ̂k|k−1 = Fk−1Σ̂k−1FT
k−1 + Q, Fk−1 ≡ F(x̂k−1) =

∂f (xk−1)

∂xk−1

∣∣∣
xk−1=x̂k−1

7 / 13



Inference
Extended Kalman filter approach: first-order Taylor series expansion

h{A,V}(xk) ≈ h{A,V}(x̂k) + H{A,V},k(xk − x̂k), H{A,V},k ≡
∂h{A,V} (xk)

∂xk

∣∣∣
xk=x̂k

⇒ p(y{A,V},k | xk) = N
(

y{A,V},k, | h{A,V} (x̂k) + H{A,V},k)(xk − x̂k), R{A,V}

)
Update step[

KT
A,k

KT
V,k

]
=

[
RA + λkHA,kΣ̂k|k−1HT

A,k (1− λk)HA,kΣ̂k|k−1HT
V,k

λkHV,kΣ̂k|k−1HT
A,k RV + (1− λk)HV,kΣ̂k|k−1HT

V,k

]−1 [
HA,k
HV,k

]
Σ̂k|k−1 (1)

x̂k = x̂k|k−1 + λkKA,k
(

yA,k − hA(x̂k)
)
+ (1− λk)KV,k

(
yV,k − hV(x̂k)

)
Σ̂k|k−1 =

(
I − λkKA,kHA,k − (1− λk)KV,kHV,k

)
Σ̂k|k−1
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Inference
The system of linear matrix equations in Eq. (1) can be expressed as[

KT
A,k KT

V,k

]T
=

[
R + UkWkUT

k

]−1 [
HA,k HV,k

]T
Σ̂k|k−1

R = blkdiag(RA, RV), Uk = blkdiag(HA,k, HV,k), Wk =

[
λk 1− λk
λk 1− λk

]
⊗ Σ̂k|k−1

Modified Kalman gain computation using the binomial inverse theorem2[
KT

A,k KT
V,k

]T
=

[
R−1 − R−1UkΓkUT

kR−1
] [

HA,k HV,k
]T

Σ̂k|k−1, Γk = Wk
(

I + UT
kR−1UkWk

)−1

Complexity w.r.t. matrix inversions: O
(
8D3

x

)
vs. O

(
(DyA + DyV)

3
)

2D. Harville: Extension of the Gauss-Markov theorem to include the estimation of random effects, Ann. Statist. vol.4, no. 2, 1976
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Evaluation
Experimental setup

▶ KAVTraC audiovisual dataset, recorded in an office
room at RUB using the Kinect sensor (7 speakers,
T60 ≈ 350ms, 35 min. duration).

▶ Constant velocity linear dynamics model and
nonlinear rotating vector observation models.

▶ DSW-EKF uses Dirichlet-prior oracle DSWs3.
▶ Four baseline systems: standard EKF, one

KF-based and two particle filter-based systems.
▶ Leave-one-out cross-validation paradigm.

3C. Schymura et al.: Audiovisual speaker tracking using nonlinear dynamical systems with dynamic stream weights, arXiv, 2019
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Evaluation
Results
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4T. Gehrig et al.: Kalman filters for audio-video source localization, WASPAA, 2005
5S. Gerlach et al.: 2D audio-visual localization in home environments using a particle filter, ITG Symp., 2012
6X. Qian et al.: 3D audio-visual speaker tracking with an adaptive particle filter, ICASSP, 2017 11 / 13



Conclusions and outlook

▶ DSW-based audiovisual speaker tracking frameworks can be extended to cope
with nonlinear systems.

▶ Complexity of update step adaptable to application.
▶ Ideas for future work:

▶ Nonlinear dimensionality reduction for audiovisual observations via encoder networks.
▶ Joint optimization of model and DSW estimation in a deep learning framework.
▶ Extension to multi-speaker scenarios.

Thank you for your attention!
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