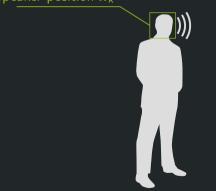
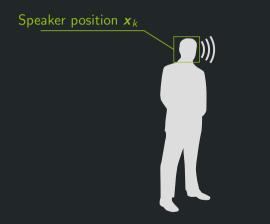
Learning Dynamic Stream Weights for Linear Dynamical Systems using Natural Evolution Strategies ICASSP 2019

Christopher Schymura and Dorothea Kolossa

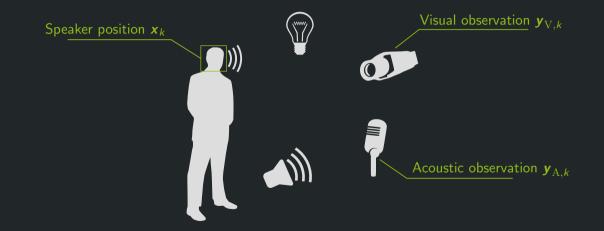
May 16th, 2019

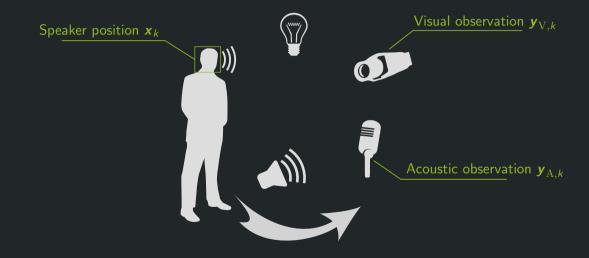
Speaker position \boldsymbol{x}_k





Visual observation $y_{V,k}$ \bigcirc Acoustic observation $\boldsymbol{y}_{\mathrm{A},k}$

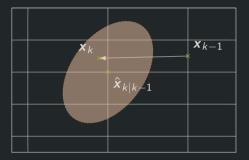




Prediction step

System dynamics:

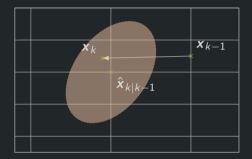
$$oldsymbol{x}_k = oldsymbol{A} oldsymbol{x}_{k-1} + oldsymbol{v}_k, \quad oldsymbol{v}_k = \mathcal{N}(oldsymbol{0}, oldsymbol{Q})$$



Prediction step

System dynamics:

$$oldsymbol{x}_k = oldsymbol{A} oldsymbol{x}_{k-1} + oldsymbol{v}_k, \quad oldsymbol{v}_k = \mathcal{N}(oldsymbol{0}, oldsymbol{Q})$$

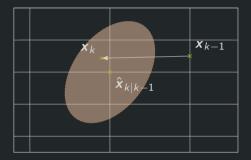


$$p(x_k \mid Y_{\mathrm{A},k-1}, \; Y_{\mathrm{V},k-1}) = \int p(x_k \mid x_{k-1}) \; p(x_{k-1} \mid Y_{\mathrm{A},k-1}, \; Y_{\mathrm{V},k-1}) \; dx_{k-1}$$

Prediction step

System dynamics:

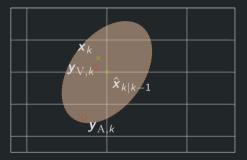
$$oldsymbol{x}_k = oldsymbol{A} oldsymbol{x}_{k-1} + oldsymbol{v}_k, \quad oldsymbol{v}_k = \mathcal{N}(oldsymbol{0}, oldsymbol{Q})$$



$$p(\boldsymbol{x}_{k} \mid \boldsymbol{Y}_{\mathrm{A},k-1}, \ \boldsymbol{Y}_{\mathrm{V},k-1}) = \int \underbrace{p(\boldsymbol{x}_{k} \mid \boldsymbol{x}_{k-1})}_{\text{Dynamic model}} \underbrace{p(\boldsymbol{x}_{k-1} \mid \boldsymbol{Y}_{\mathrm{A},k-1}, \ \boldsymbol{Y}_{\mathrm{V},k-1})}_{\text{Prior}} d\boldsymbol{x}_{k-1}$$

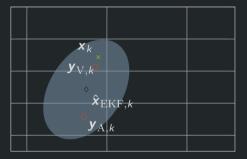
Observation

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$



Update step (standard Kalman filter)

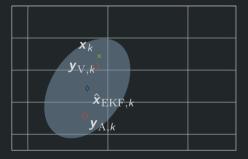
$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$



Update step (standard Kalman filter)

Observation model:

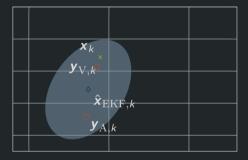
$$egin{aligned} oldsymbol{y}_k &= egin{bmatrix} oldsymbol{y}_{\mathrm{A},k} & oldsymbol{y}_{\mathrm{V},k} \end{bmatrix}^{\mathrm{T}} &= oldsymbol{C}oldsymbol{x}_k + oldsymbol{w}_k \ oldsymbol{w}_k &= \mathcal{N}(oldsymbol{0}, oldsymbol{R}), \quad oldsymbol{R} &= egin{bmatrix} oldsymbol{R}_{\mathrm{AA}} & oldsymbol{R}_{\mathrm{AV}} \ oldsymbol{R}_{\mathrm{VA}} & oldsymbol{R}_{\mathrm{VV}} \end{bmatrix} \end{aligned}$$



 $p(\boldsymbol{x}_k \mid \boldsymbol{Y}_{\mathrm{A},k}, \; \boldsymbol{Y}_{\mathrm{V},k}) \propto p(\boldsymbol{x}_k \mid \boldsymbol{Y}_{\mathrm{A},k-1}, \; \boldsymbol{Y}_{\mathrm{V},k-1}) \, p(\boldsymbol{y}_{\mathrm{A},k}, \; \boldsymbol{y}_{\mathrm{V},k} \mid \boldsymbol{x}_k)$

Update step (standard Kalman filter)

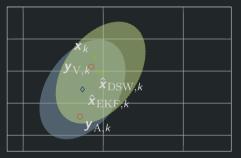
$$egin{aligned} oldsymbol{y}_k &= egin{bmatrix} oldsymbol{y}_{\mathrm{A},k} & oldsymbol{y}_{\mathrm{V},k} \end{bmatrix}^{\mathrm{T}} &= oldsymbol{\mathcal{C}} oldsymbol{x}_k + oldsymbol{w}_k \ oldsymbol{w}_k &= \mathcal{N}(oldsymbol{0}, oldsymbol{R}), \quad oldsymbol{R} &= egin{bmatrix} oldsymbol{R}_{\mathrm{AA}} & oldsymbol{R}_{\mathrm{AV}} \ oldsymbol{R}_{\mathrm{VA}} & oldsymbol{R}_{\mathrm{VV}} \end{bmatrix} \end{aligned}$$



$$p(\mathbf{x}_k \mid \mathbf{Y}_{\mathrm{A},k}, \; \mathbf{Y}_{\mathrm{V},k}) \propto p(\mathbf{x}_k \mid \mathbf{Y}_{\mathrm{A},k-1}, \; \mathbf{Y}_{\mathrm{V},k-1}) \underbrace{p(\mathbf{y}_{\mathrm{A},k}, \; \mathbf{y}_{\mathrm{V},k} \mid \mathbf{x}_k)}_{\mathsf{Sensor model}}$$

Update step (Kalman filter with dynamic stream weights¹)

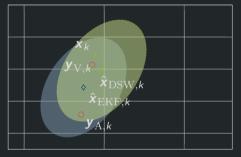
$$egin{aligned} & m{y}_{\mathrm{A},k} = m{\mathcal{C}}_{\mathrm{A}}m{x}_k + m{w}_{\mathrm{A},k}, & m{w}_{\mathrm{A},k} = \mathcal{N}(m{0},\,m{R}_{\mathrm{AA}}) \ & m{y}_{\mathrm{V},k} = m{\mathcal{C}}_{\mathrm{V}}m{x}_k + m{w}_{\mathrm{V},k}, & m{w}_{\mathrm{V},k} = \mathcal{N}(m{0},\,m{R}_{\mathrm{VV}}) \end{aligned}$$



¹C. Schymura, T. Isenberg, D. Kolossa: Extending Linear Dynamical Systems with Dynamic Stream Weights for Audiovisual Speaker

Update step (Kalman filter with dynamic stream weights¹)

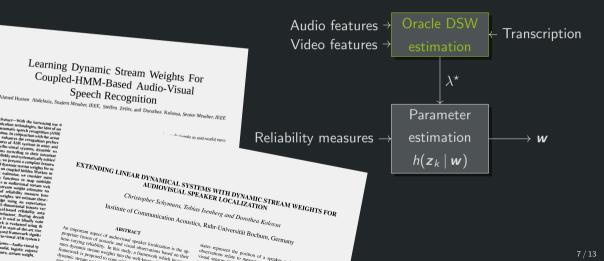
$$egin{aligned} & oldsymbol{y}_{\mathrm{A},k} = oldsymbol{C}_{\mathrm{A}}oldsymbol{x}_k + oldsymbol{w}_{\mathrm{A},k}, & oldsymbol{w}_{\mathrm{A},k} = \mathcal{N}(oldsymbol{0}, oldsymbol{R}_{\mathrm{AA}}) \ & oldsymbol{y}_{\mathrm{V},k} = oldsymbol{C}_{\mathrm{V}}oldsymbol{x}_k + oldsymbol{w}_{\mathrm{V},k}, & oldsymbol{w}_{\mathrm{V},k} = \mathcal{N}(oldsymbol{0}, oldsymbol{R}_{\mathrm{VV}}) \end{aligned}$$



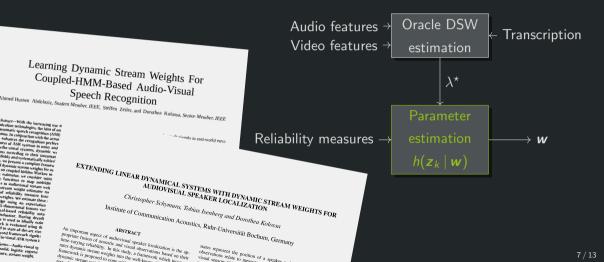
$$p(\boldsymbol{x}_{k} \mid \boldsymbol{Y}_{\mathrm{A},k}, \boldsymbol{Y}_{\mathrm{V},k}) \propto p(\boldsymbol{x}_{k} \mid \boldsymbol{Y}_{\mathrm{A},k-1}, \boldsymbol{Y}_{\mathrm{V},k-1}) \underbrace{p(\boldsymbol{y}_{\mathrm{A},k} \mid \boldsymbol{x}_{k})^{\lambda_{k}}}_{\text{Acoustic model}} \underbrace{p(\boldsymbol{y}_{\mathrm{V},k} \mid \boldsymbol{x}_{k})^{1-\lambda_{k}}}_{\text{Visual model}}$$

¹C. Schymura, T. Isenberg, D. Kolossa: Extending Linear Dynamical Systems with Dynamic Stream Weights for Audiovisual Speaker

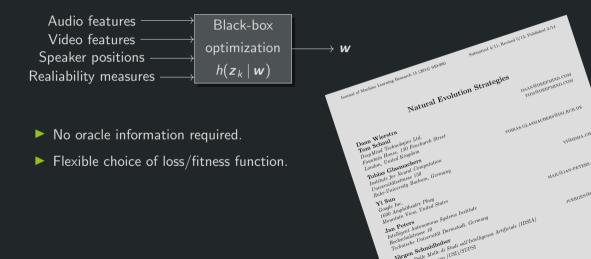
Standard approach: Supervised training with oracle dynamic stream weights

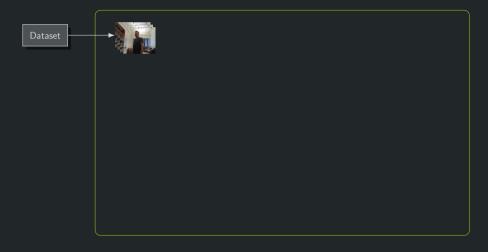


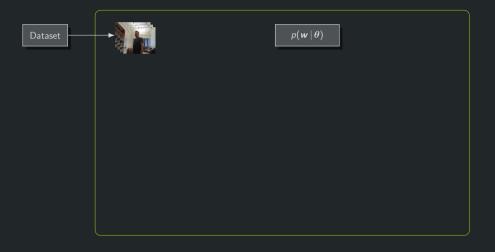
Standard approach: Supervised training with oracle dynamic stream weights

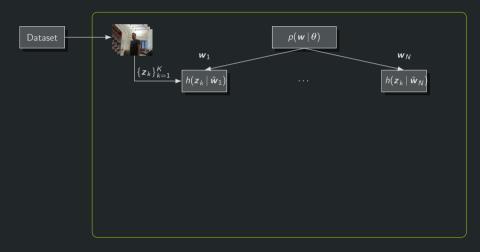


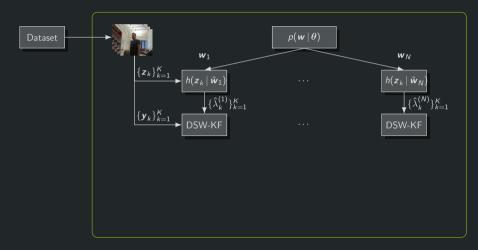
Proposed approach: Training with natural evolution strategies

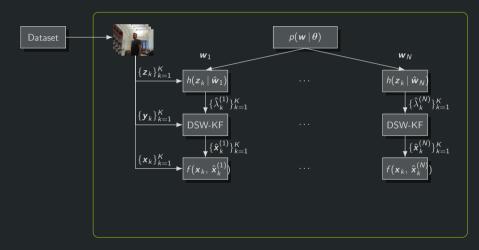


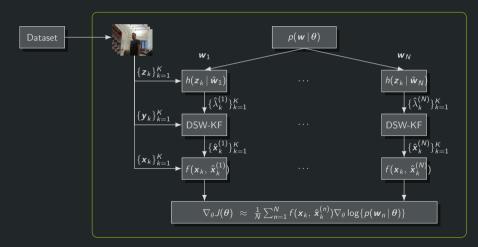


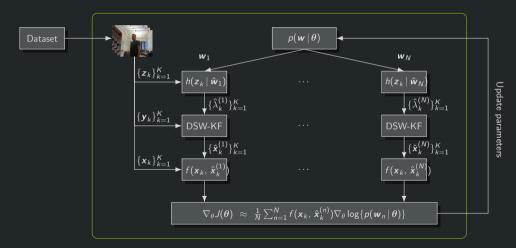












Implementation

Reliability measures: instantaneous estimated a-priori SNR, acoustic and visual observation log-likelihoods².

²A. H. Abdelaziz, S. Zeiler, D. Kolossa: Learning Dynamic Stream Weights for Coupled-HMM-Based Audio-Visual Speech Recognition, 2015

Implementation

Reliability measures: instantaneous estimated a-priori SNR, acoustic and visual observation log-likelihoods².

Evaluation of two different DSW prediction models: logistic function and fully-connected feed-forward neural network.

²A. H. Abdelaziz, S. Zeiler, D. Kolossa: Learning Dynamic Stream Weights for Coupled-HMM-Based Audio-Visual Speech Recognition, 2015

Implementation

Reliability measures: instantaneous estimated a-priori SNR, acoustic and visual observation log-likelihoods².

Evaluation of two different DSW prediction models: logistic function and fully-connected feed-forward neural network.

Separable natural evolution strategies (sNES) as optimizer:

$$p(w | \theta) = \mathcal{N}(w | \mu_w, \operatorname{diag}(\sigma_w))$$

²A. H. Abdelaziz, S. Zeiler, D. Kolossa: Learning Dynamic Stream Weights for Coupled-HMM-Based Audio-Visual Speech Recognition, 2015

Implementation

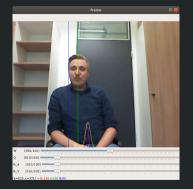
Reliability measures: instantaneous estimated a-priori SNR, acoustic and visual observation log-likelihoods².

- Evaluation of two different DSW prediction models: logistic function and fully-connected feed-forward neural network.
- Separable natural evolution strategies (sNES) as optimizer: $p(\mathbf{w} | \mathbf{\theta}) = \mathcal{N}(\mathbf{w} | \mathbf{\mu}_{\mathbf{w}}, \operatorname{diag}(\mathbf{\sigma}_{\mathbf{w}}))$
- Fitness function allowing direct optimization of instantaneous localization error: $f(\boldsymbol{w}) = -\frac{1}{M} \sum_{m=1}^{M} \frac{1}{K_m} \sum_{k=1}^{K_m} \left(\phi_k^{(m)} - \hat{\phi}_k^{(m)}(\boldsymbol{w}) \right)^2$

²A. H. Abdelaziz, S. Zeiler, D. Kolossa: Learning Dynamic Stream Weights for Coupled-HMM-Based Audio-Visual Speech Recognition, 2015

Experimental setup

 Front-end: DPD-MUSIC³ for acoustic localization, Viola-Jones⁴ algorithm for visual localization.

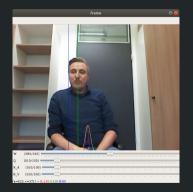


³Nadiri et al.: Localization of multiple speakers under high reverberation using a spherical microphone array and the direct-path dominance test, 2014

⁴P. Viola, M. Jones: *Rapid object detection using a boosted cascade of simple features*, 2001

Experimental setup

- Front-end: DPD-MUSIC³ for acoustic localization, Viola-Jones⁴ algorithm for visual localization.
- ▶ Dataset of audiovisual recordings in an office environment ($T_{60} \approx 350 \text{ ms}$) using the Kinect.



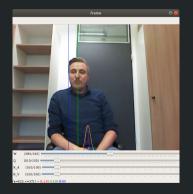
³Nadiri et al.: Localization of multiple speakers under high reverberation using a spherical microphone array and the direct-path dominance test, 2014

⁴P. Viola, M. Jones: *Rapid object detection using a boosted cascade of simple features*, 2001

Experimental setup

- Front-end: DPD-MUSIC³ for acoustic localization, Viola-Jones⁴ algorithm for visual localization.
- ▶ Dataset of audiovisual recordings in an office environment ($T_{60} \approx 350 \,\mathrm{ms}$) using the Kinect.

Constant velocity dynamics model.

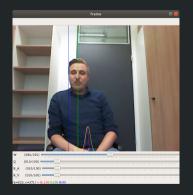


³Nadiri et al.: Localization of multiple speakers under high reverberation using a spherical microphone array and the direct-path dominance test, 2014

⁴P. Viola, M. Jones: *Rapid object detection using a boosted cascade of simple features*, 2001

Experimental setup

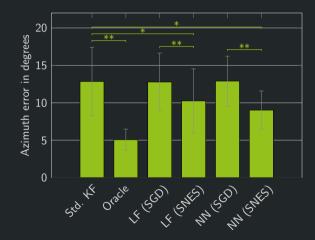
- Front-end: DPD-MUSIC³ for acoustic localization, Viola-Jones⁴ algorithm for visual localization.
- ▶ Dataset of audiovisual recordings in an office environment ($T_{60} \approx 350 \,\mathrm{ms}$) using the Kinect.
- Constant velocity dynamics model.
- Baseline: Stream weight prediction models trained on oracle DSWs with SGD (same architecture)



³Nadiri et al.: Localization of multiple speakers under high reverberation using a spherical microphone array and the direct-path dominance test, 2014

⁴P. Viola, M. Jones: *Rapid object detection using a boosted cascade of simple features*, 2001

Results



Statistical significance: * for p < 0.05 and ** for p < 0.01

A DSW-based audiovisual speaker tracking system can benefit from black-box optimization approaches like NES (no oracle DSWs required).

- A DSW-based audiovisual speaker tracking system can benefit from black-box optimization approaches like NES (no oracle DSWs required).
- Ideas for future work:

- A DSW-based audiovisual speaker tracking system can benefit from black-box optimization approaches like NES (no oracle DSWs required).
- Ideas for future work:
 - Making the system trainable end-to-end.

- A DSW-based audiovisual speaker tracking system can benefit from black-box optimization approaches like NES (no oracle DSWs required).
- Ideas for future work:
 - Making the system trainable end-to-end.
 - Joint optimization of DSW estimators and model parameters.

- A DSW-based audiovisual speaker tracking system can benefit from black-box optimization approaches like NES (no oracle DSWs required).
- Ideas for future work:
 - Making the system trainable end-to-end.
 - Joint optimization of DSW estimators and model parameters.
 - Extension to multi-speaker scenarios.

- A DSW-based audiovisual speaker tracking system can benefit from black-box optimization approaches like NES (no oracle DSWs required).
- Ideas for future work:
 - Making the system trainable end-to-end.
 - Joint optimization of DSW estimators and model parameters.
 - Extension to multi-speaker scenarios.

RUHR UNIVERSITÄT RUB Thank you for your attention!