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Problem statement

State transition function:

xk = Axk−1 + vk

Observation functions:

yA,k = C Axk + wA,k

yV,k = C Vxk + wV,k
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Recursive state estimation
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Dynamic stream weights
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Inference

Prediction step (identical to standard Kalman filter)

x̂k|k−1 = Ax̂k−1

Σ̂k|k−1 = AΣ̂k−1AT + Q

Update step1[
KT

A,k

KT
V,k

]
=

[
RA + λA,kCA,k Σ̂k|k−1CT

A,k λV,kCA,k Σ̂k|k−1CT
V,k

λA,kCV,k Σ̂k|k−1CT
A,k RV + λV,kCV,k Σ̂k|k−1CT

V,k

]−1 [
CA,k

CV,k

]
Σ̂k|k−1

x̂k = x̂k|k−1 +
∑

i∈{A, V}
λi,kK i,k

(
y i,k − C i x̂k|k−1

)
Σ̂k =

(
I −

∑
i∈{A, V}

λi,kK i,kC i

)
Σ̂k|k−1
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DSW-KF: Benefits and remaining challenges

Kalman filter framework provides uncertainty information ...
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Proposed system

End-to-end optimization in a deep learning framework:

SRP-PHAT

spectrum

Facial

landmarks

FC ReLU FC

FC ReLU FC

Concat.

yA,k

FC ReLU FC Sigm.

Kalman

gain

yV,k

State

update

λ{A,V},k

K {A,V},k

State

prediction

x̂k|k−1

Σ̂k|k−1

RA RV x̂k−1 Σ̂k−1

Q

x̂k Σ̂k
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Proposed system

I Learning noise covariance matrices via Cholesky decomposition:

q =


q1

q2
...

qN

 ⇒ LQ =


q1 0 · · · 0

q2 q3 · · · 0
...

...
. . .

...

qN−3 qN−2 qN−1 qN

 ⇒ Q = LQLT
Q

with Q ∈ RD×D and N = D(D+1)
2 .

I Projecting state space to direction-of-arrival in the loss function:

L =
1

BK

B∑
b=1

K∑
k=1

‖Cϑx̂ (b)
k − ϑ

(b)
k ‖

2
2
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Evaluation

I Dataset: 70 audiovisual recordings of 7 speakers in an office environment,

augmented with different acoustic noise conditions at 4 SNRs. 7-fold cross

validation paradigm with 50/10/10 sequences train/val/test split.

I Training parameters:

Parameter Description Value

DzA Audio feature dimension (SRP-PHAT spectrum) 481

DzV Video feature dimension (facial landmarks) 136

DyA , DyV Audio and video observation dimensions 4

Dx State dimension 8

η Learning rate 0.001

B Batch size 128
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Results

LSTM GRU BKF DSW-BKF
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LSTM 382722

GRU 287106

BKF 21550

DSW-BKF 42002

Gross accuracy: Percentage of speakers detected correctly within a radius of 2◦

around the annotated ground-truth direction-of-arrival.
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Conclusions

I Dynamic stream weights can benefit audiovisual speaker localization performance

and provide an additional level of explainability regarding sensor reliability.

I The dynamic stream weight Kalman filter can be integrated into a

deep learning framework, which can be trained via backprop.

I The proposed system still yields explainable estimates by

providing uncertainty information.

I Dynamic stream weight prediction is fully integrated

into the system and can be trained jointly with the

model parameters.

Thank you for your attention!

11 / 11



Conclusions

I Dynamic stream weights can benefit audiovisual speaker localization performance

and provide an additional level of explainability regarding sensor reliability.

I The dynamic stream weight Kalman filter can be integrated into a

deep learning framework, which can be trained via backprop.

I The proposed system still yields explainable estimates by

providing uncertainty information.

I Dynamic stream weight prediction is fully integrated

into the system and can be trained jointly with the

model parameters.

Thank you for your attention!

11 / 11



Conclusions

I Dynamic stream weights can benefit audiovisual speaker localization performance

and provide an additional level of explainability regarding sensor reliability.

I The dynamic stream weight Kalman filter can be integrated into a

deep learning framework, which can be trained via backprop.

I The proposed system still yields explainable estimates by

providing uncertainty information.

I Dynamic stream weight prediction is fully integrated

into the system and can be trained jointly with the

model parameters.

Thank you for your attention!

11 / 11



Conclusions

I Dynamic stream weights can benefit audiovisual speaker localization performance

and provide an additional level of explainability regarding sensor reliability.

I The dynamic stream weight Kalman filter can be integrated into a

deep learning framework, which can be trained via backprop.

I The proposed system still yields explainable estimates by

providing uncertainty information.

I Dynamic stream weight prediction is fully integrated

into the system and can be trained jointly with the

model parameters.

Thank you for your attention!

11 / 11



Conclusions

I Dynamic stream weights can benefit audiovisual speaker localization performance

and provide an additional level of explainability regarding sensor reliability.

I The dynamic stream weight Kalman filter can be integrated into a

deep learning framework, which can be trained via backprop.

I The proposed system still yields explainable estimates by

providing uncertainty information.

I Dynamic stream weight prediction is fully integrated

into the system and can be trained jointly with the

model parameters.

Thank you for your attention!

11 / 11


