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Audiovisual speaker tracking
Prediction step

System dynamics:

xk = f (xk−1) + vk, vk = N (0, Q)

xk−1xk

x̂k|k−1

p(xk |YA,k−1, YV,k−1) =

∫
p(xk | xk−1)︸ ︷︷ ︸
Dynamic model

p(xk−1 |YA,k−1, YV,k−1)︸ ︷︷ ︸
Prior

dxk−1
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Audiovisual speaker tracking
Observation

Observation model:

yk =
[
yA,k yV,k

]T
= h (xk) + wk

wk = N (0, R), R =

[
RAA RAV

RVA RVV

]
xk

x̂k|k−1

yV,k

yA,k
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Audiovisual speaker tracking
Update step (standard Kalman filter)

Observation model:

yk =
[
yA,k yV,k

]T
= h (xk) + wk

wk = N (0, R), R =

[
RAA RAV

RVA RVV

]
xk

x̂EKF,k

yV,k

yA,k

p(xk |YA,k, YV,k) ∝ p(xk |YA,k−1, YV,k−1) p(yA,k, yV,k | xk)︸ ︷︷ ︸
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Audiovisual speaker tracking
Update step (Kalman filter with dynamic stream weights1)

Observation model:

yA,k = hA(xk) + wA,k, wA,k = N (0, RAA)

yV,k = hV(xk) + wV,k, wV,k = N (0, RVV)

xk

x̂DSW,k

yV,k

yA,k

p(xk |YA,k, YV,k) ∝ p(xk |YA,k−1, YV,k−1) p(yA,k | xk)
λk︸ ︷︷ ︸

Acoustic model

p(yV,k | xk)
1−λk︸ ︷︷ ︸

Visual model

1C. Schymura et al.: Extending linear dynamical systems with dynamic stream weights for audiovisual speaker localization, IWAENC, 2018
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Inference
Extended Kalman filter approach: first-order Taylor series expansion

f (xk−1) ≈ f (x̂k−1) + F(x̂k−1)(xk−1 − x̂k−1)

⇒ p(xk | xk−1) = N
(

xk | f (x̂k−1) + F(x̂k−1)(xk−1 − x̂k−1), Q
)

⇒ p(xk |YA,k−1, YV,k−1) = N
(

xk | x̂k−1, Σ̂k−1

)
Prediction step (identical to standard EKF)

x̂k|k−1 = f (x̂k−1)

Σ̂k|k−1 = Fk−1Σ̂k−1FTk−1 + Q, Fk−1 ≡ F(x̂k−1) =
∂f (xk−1)

∂xk−1

∣∣∣
xk−1=x̂k−1
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Inference
Extended Kalman filter approach: first-order Taylor series expansion

h{A,V}(xk) ≈ h{A,V}(x̂k) + H{A,V},k(xk − x̂k), H{A,V},k ≡
∂h{A,V} (xk)

∂xk

∣∣∣
xk=x̂k

⇒ p(y{A,V},k | xk) = N
(

y{A,V},k, | h{A,V} (x̂k) + H{A,V},k)(xk − x̂k), R{A,V}

)
Update step[

KT
A,k

KT
V,k

]
=

[
RA + λkHA,kΣ̂k|k−1HT

A,k (1− λk)HA,kΣ̂k|k−1HT
V,k

λkHV,kΣ̂k|k−1HT
A,k RV + (1− λk)HV,kΣ̂k|k−1HT

V,k

]−1 [
HA,k
HV,k

]
Σ̂k|k−1

x̂k = x̂k|k−1 + λkKA,k
(

yA,k − hA(x̂k)
)
+ (1− λk)KV,k

(
yV,k − hV(x̂k)

)
Σ̂k|k−1 =

(
I − λkKA,kHA,k − (1− λk)KV,kHV,k

)
Σ̂k|k−1
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Evaluation I
Experimental setup

▶ KAVTraC audiovisual dataset, recorded in an office
room at RUB using the Kinect sensor (7 speakers,
T60 ≈ 350ms, 35 min. duration).

▶ Constant velocity linear dynamics model and
nonlinear rotating vector observation models.

▶ DSW-EKF uses Dirichlet-prior oracle DSWs2.
▶ Four baseline systems: standard EKF, one

KF-based and two particle filter-based systems.
▶ Leave-one-out cross-validation paradigm.

2C. Schymura et al.: Audiovisual speaker tracking using nonlinear dynamical systems with dynamic stream weights, arXiv, 2019
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Evaluation I
Results
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3T. Gehrig et al.: Kalman filters for audio-video source localization, WASPAA, 2005
4S. Gerlach et al.: 2D audio-visual localization in home environments using a particle filter, ITG Symp., 2012
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Learning Dynamic Stream Weights ForCoupled-HMM-Based Audio-VisualSpeech Recognition

Ahmed Hussen Abdelaziz, Student Member, IEEE, Steffen Zeiler, and Dorothea Kolossa, Senior Member, IEEEAbstract—With the increasing use of multimedia data in com-

nication technologies, the idea of employing visual information

automatic speech recognition (ASR) has recently gathered mo-

ntum. In conjunction with the acoustical information, the visual

a enhances the recognition performance and improves the ro-

ness of ASR systems in noisy and reverberant environments.

udio-visual systems, dynamic weighting of audio and video

ams according to their instantaneous con�dence is essential

eliably and systematically achieving high performance. In this

r, we present a complete framework that allows blind estima-

f dynamic streamweights for audio-visual speech recognition

on coupled hidden Markov models (CHMMs). As a stream

t estimator, we consider using multilayer perceptrons and

c functions to map multidimensional reliability measure

es to audiovisual stream weights. Training the parameters

stream weight estimator requires numerous input-output

of reliability measure features and their corresponding

weights. We estimate these stream weights based on oracle

dge using an expectation maximization algorithm. We

31-dimensional feature vectors that combine model-based

nal-based reliability measures as inputs to the stream

estimator. During decoding, the trained stream weight

r is used to blindly estimate stream weights. The entire

rk is evaluated using the Grid audio-visual corpus and

d to state-of-the-art stream weight estimation strategies.

osed framework signi�cantly enhances the performance

dio-visual ASR system in all examined test conditions.Terms—Audio-visual speech recognition, coupled hidden
model, logistic regression, multilayer perceptron, relia-
sure, stream weight.

to the massive corruption of speech signals in real-world envi-

ronments, which leads to a rapid degradation in the ASR per-

formance under adverse acoustical conditions [1]. A range of

front-end and back-end methods [2], [3] have been proposed

in order to improve the ASR performance in the presence of

noise. One of these methods that has recently attracted research

interest is using visual features encoding the appearance and

shape of the speaker’s mouth in conjunction with the conven-

tional acoustical features. The motivation of this approach is

that the visual features are independent of the acoustical envi-

ronment while relevant to the speech production process.
In order to model the speech production process using both

the acoustical and visual information, many models have been

proposed. These models differ regarding the point where the

fusion of the audio and video streams takes place. For example,

in direct integration (DI) models, the fusion is applied on the

feature level by simply concatenating the audio and visual

features [4], or by combining the features in a more complex

manner using techniques like dominant or motor recording

[5], [6]. Alternatively, separate integration (SI) models [6],

[7] integrate the audio and video modality at the classier

output level. The fusion level in SI models varies according

to the denition of the classier output, e.g., phrase, word, or

phoneme level.
Between these two

Learning dynamic stream weights
Standard approach: Supervised training with oracle dynamic stream weights
.

Oracle DSW
estimation

Parameter
estimation
h(zk |w)

λ⋆

Audio features
Video features

Reliability measures

Transcription

w
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Learning dynamic stream weights
Proposed approach: Training with natural evolution strategies

Black-box
optimization

h(zk |w)Realiability measures
Speaker positions
Video features
Audio features

w

.

▶ No oracle information required.
▶ Flexible choice of loss/fitness function.
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Learning dynamic stream weights
Training procedure6

Dataset

p(w |θ)

h(zk | ŵ1) · · · h(zk | ŵN)

w1 wN

{zk}K
k=1

DSW-KF · · · DSW-KF

{λ̂(1)
k }K

k=1 {λ̂(N)
k }K

k=1

{yk}K
k=1

f(xk, x̂(1)k ) · · · f(xk, x̂(N)
k )

{x̂(1)k }K
k=1 {x̂(N)

k }K
k=1

{xk}K
k=1

∇θJ(θ) ≈ 1
N
∑N

n=1 f(xk, x̂(n)k )∇θ log{p(wn |θ)}

Update
param

eters

6C. Schymura et al.: Learning dynamic stream weights for linear dynamical systems using natural evolution strategies, ICASSP, 2019
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w1 wN

{zk}K
k=1

DSW-KF · · · DSW-KF

{λ̂(1)
k }K

k=1 {λ̂(N)
k }K

k=1

{yk}K
k=1

f(xk, x̂(1)k ) · · · f(xk, x̂(N)
k )

{x̂(1)k }K
k=1 {x̂(N)

k }K
k=1

{xk}K
k=1

∇θJ(θ) ≈ 1
N
∑N

n=1 f(xk, x̂(n)k )∇θ log{p(wn |θ)}

Update
param

eters

6C. Schymura et al.: Learning dynamic stream weights for linear dynamical systems using natural evolution strategies, ICASSP, 2019
13 / 16



Learning dynamic stream weights
Training procedure6

Dataset p(w |θ)
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Evaluation II
Results
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Conclusions and outlook

▶ DSW-based audiovisual speaker tracking frameworks can be extended to cope
with nonlinear systems.

▶ A DSW-based audiovisual speaker tracking system can benefit from black-box
optimization approaches.

▶ Ideas for future work:
▶ Joint optimization of model and DSW estimation in a deep learning framework.
▶ Extension to multi-speaker scenarios.

Thank you for your attention!
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