

Blackboard Architectures

Two!Ears Summer School on Active Machine Hearing

Christopher Schymura, Dorothea Kolossa September 23, 2015

Outline

1 Introduction

- 2 Blackboard basics
- **3** Probabilistic graphical models
- **4** Applications in Two!Ears
- 5 Summary

Introduction

What is a blackboard system?

Two!Ears

© 2011 Anthony J. Bentley https://commons.wikimedia.org/wiki/File:Blackboards_-_UNM_Astrophysics.jpg

Introduction

Characteristics of blackboard systems [Corkill, 1991]:

Independence of expertise

- Independence of expertise
- Diversity in problem-solving techniques

- Independence of expertise
- Diversity in problem-solving techniques
- Flexible representation of blackboard information

- Independence of expertise
- Diversity in problem-solving techniques
- Flexible representation of blackboard information
- Common interaction language

- Independence of expertise
- Diversity in problem-solving techniques
- Flexible representation of blackboard information
- Common interaction language
- Event-based activation

- Independence of expertise
- Diversity in problem-solving techniques
- Flexible representation of blackboard information
- Common interaction language
- Event-based activation
- Need for control

- Independence of expertise
- Diversity in problem-solving techniques
- Flexible representation of blackboard information
- Common interaction language
- Event-based activation
- Need for control
- Incremental solution generation

Characteristics of blackboard systems [Corkill, 1991]:

- Independence of expertise
- Diversity in problem-solving techniques
- Flexible representation of blackboard information
- Common interaction language
- Event-based activation
- Need for control
- Incremental solution generation

How to put this into a computational framework?

Introduction

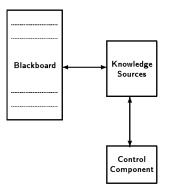


Figure 1: Basic Components of the Blackboard Model

Image taken from [Corkill, 1991]

Basic blackboard system components:

Knowledge sources

- Independent (software) modules, designed to solve specific subtasks
- Can retrieve and write data from/to the blackboard
- May include additional knowledge (e.g. prior supervised training)

Basic blackboard system components:

Knowledge sources

- Independent (software) modules, designed to solve specific subtasks
- Can retrieve and write data from/to the blackboard
- May include additional knowledge (e.g. prior supervised training)

Blackboard

- · Global database, containing input data and partial solutions
- Arbitrary data representations (e.g. numerical, probabilistic, semantic)

Basic blackboard system components:

Knowledge sources

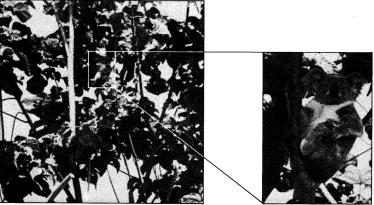
- Independent (software) modules, designed to solve specific subtasks
- Can retrieve and write data from/to the blackboard
- May include additional knowledge (e.g. prior supervised training)

Blackboard

- Global database, containing input data and partial solutions
- Arbitrary data representations (e.g. numerical, probabilistic, semantic)
- Control component ("Scheduler")
 - Determines order of knowledge source execution
 - Keeps track of blackboard events and pending activations
 - Different task-dependent implementations described in the literature

Introduction

Example from [Nii, 1986]: Finding Koalas



Courtesy, San Diego Zoo.

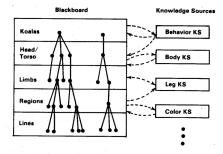
Courtesy, San Diego Zoo.

Finding Koalas

Image taken from [Nii, 1986]

Introduction

Example from [Nii, 1986]: Finding Koalas



The koalas in the scene are described as a part-of hierarchy. Specialist knowledge modules contribute information about what they "see" to help in the search for koalas.

> Koalas: Blackboard Structure and Knowledge Sources

Image taken from [Nii, 1986]

RUB

Introduction

Areas where blackboard systems have been applied:

- Speech recognition [Erman et al., 1980]
- Circuit design and layout [Milzner, 1991]
- Process monitoring and control [Cord, 1994]
- Robotics [Tzafestas & Tzafestas, 1991]
- Distributed planning [Han et al., 2014]
- Wireless networks [Reddy et al, 2008]

RUB

Blackboard basics

Formal definition: A blackboard system is composed of

• a set of knowledge sources $\mathcal{K} = \{\kappa_1, \ldots, \kappa_N\}$,

RUB

Blackboard basics

- a set of knowledge sources $\mathcal{K} = \{\kappa_1, \ldots, \kappa_N\}$,
- a state-space \mathcal{Z} describing the set of possible blackboard states,

RUB

Blackboard basics

- a set of knowledge sources $\mathcal{K} = \{\kappa_1, \ldots, \kappa_N\}$,
- a state-space \mathcal{Z} describing the set of possible blackboard states,
- \blacksquare a set of events $\mathcal{E}=\{\epsilon_1,\,\ldots,\,\epsilon_M\}$ associated with specific state transitions,

RUB

Blackboard basics

- a set of knowledge sources $\mathcal{K} = \{\kappa_1, \ldots, \kappa_N\}$,
- \blacksquare a state-space \mathcal{Z} describing the set of possible blackboard states,
- \blacksquare a set of events $\mathcal{E}=\{\epsilon_1,\,\ldots,\,\epsilon_M\}$ associated with specific state transitions,
- lacksquare an agenda ${\mathcal A}$ describing the order of knowledge source execution and

RUB

Blackboard basics

- a set of knowledge sources $\mathcal{K} = \{\kappa_1, \ldots, \kappa_N\}$,
- \blacksquare a state-space $\mathcal Z$ describing the set of possible blackboard states,
- \blacksquare a set of events $\mathcal{E}=\{\epsilon_1,\,\ldots,\,\epsilon_M\}$ associated with specific state transitions,
- \blacksquare an agenda ${\mathcal A}$ describing the order of knowledge source execution and
- $\blacksquare \text{ a scheduler } f: \epsilon_i \mapsto \alpha, \quad \epsilon_i \in \mathcal{E}, \ \alpha \in \mathcal{A}.$

Blackboard basics

A knowledge source κ_i comprises

- a mapping function $f_i: \ \mathcal{X}_i \to \mathcal{Y}_i$, where
 - + $\mathcal{X}_i \subseteq \mathcal{Z}$ is the set of possible inputs of knowledge source i and
 - $\mathcal{Y}_i \subseteq \mathcal{Z}$ is the set of possible outputs of knowledge source i,
- \blacksquare a set of internal parameters λ_i (optional) and
- an associated importance weight w_i (optional, system dependent).

$$x \in \mathcal{X}_i \qquad \qquad y = f_i(x, \lambda_i) \qquad \qquad y \in \mathcal{Y}_i \rightarrow$$

Blackboard basics

A knowledge source κ_i comprises

- a mapping function $f_i: \ \mathcal{X}_i \to \mathcal{Y}_i$, where
 - + $\mathcal{X}_i \subseteq \mathcal{Z}$ is the set of possible inputs of knowledge source i and
 - $\mathcal{Y}_i \subseteq \mathcal{Z}$ is the set of possible outputs of knowledge source i,
- a set of internal parameters λ_i (optional) and
- an associated importance weight w_i (optional, system dependent).

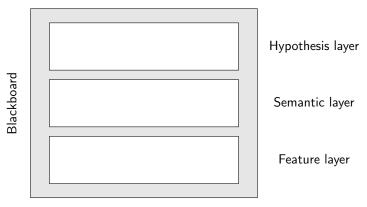
$$\begin{array}{c|c} c \in \mathcal{X}_i \\ \hline \end{array} & y = f_i(x, \, \lambda_i) \\ \hline \end{array} \begin{array}{c} y \in \mathcal{Y}_i \\ \hline \end{array} \quad \text{,dog,}$$

RUB

Blackboard basics

The **blackboard** serves as "memory" and solution space of the system. The blackboard state is dynamically changing over time:

$$z_{t+1} = h_t(z_t), \quad z_{t+1}, \, z_t \in \mathcal{Z}$$



RUB

Blackboard basics

The **blackboard** serves as "memory" and solution space of the system. The blackboard state is dynamically changing over time:

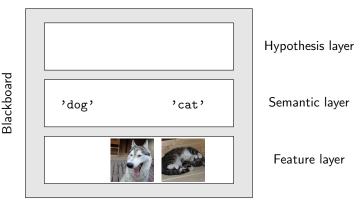
$$z_{t+1} = h_t(z_t), \quad z_{t+1}, \, z_t \in \mathcal{Z}$$

RUB

Blackboard basics

The **blackboard** serves as "memory" and solution space of the system. The blackboard state is dynamically changing over time:

$$z_{t+1} = h_t(z_t), \quad z_{t+1}, \, z_t \in \mathcal{Z}$$

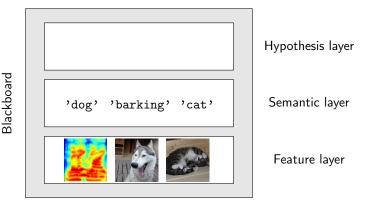


RUB

Blackboard basics

The **blackboard** serves as "memory" and solution space of the system. The blackboard state is dynamically changing over time:

$$z_{t+1} = h_t(z_t), \quad z_{t+1}, \, z_t \in \mathcal{Z}$$



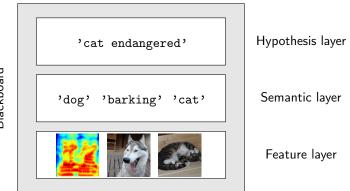
RUB

Blackboard basics

The **blackboard** serves as "memory" and solution space of the system. The blackboard state is dynamically changing over time:

$$z_{t+1} = h_t(z_t), \quad z_{t+1}, \, z_t \in \mathcal{Z}$$

 $h_t(z_t)$ represents an action chosen by the scheduler at time instant t.



Blackboard

RUB

Blackboard basics

The scheduler

- maintains the order of knowledge source execution based on possible actions listed in the current agenda $a_t \in A$ and
- executes the knowledge source with the highest importance weight w_i .

Blackboard basics

The scheduler

- maintains the order of knowledge source execution based on possible actions listed in the current agenda $a_t \in A$ and
- executes the knowledge source with the highest importance weight w_i .

The scheduler is an *attentional* mechanism, allowing the allocation of computational resources to tasks of particular interests in specific situations.

Blackboard basics

The scheduler

- maintains the order of knowledge source execution based on possible actions listed in the current agenda $a_t \in A$ and
- executes the knowledge source with the highest importance weight w_i .

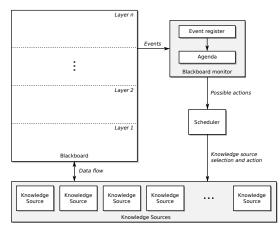
The scheduler is an *attentional* mechanism, allowing the allocation of computational resources to tasks of particular interests in specific situations.

Alternative scheduling approaches exist (e.g. [Sutton et al, 2004]).

RUB

Blackboard basics

Blackboard architecture used in Two!Ears:



Online documentation: http://twoears.aipa.tu-berlin.de/doc/latest/blackboard/

Blackboard basics

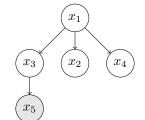
Can blackboard systems be combined with modern statistical learning approaches to solve complex tasks in field of active machine hearing?

RUB

Probabilistic graphical models

In (probabilistic) graphical models, a variable that depends on another one is connected to it with an arrow pointing to the dependent variable.

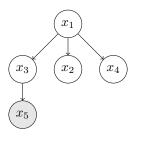
In (probabilistic) graphical models, a variable that depends on another one is connected to it with an arrow pointing to the dependent variable.



In (probabilistic) graphical models, a variable that depends on another one is connected to it with an arrow pointing to the dependent variable.

This model encodes the fact that

$$p(x_1, x_2, \ldots, x_5) = p(x_1)p(x_2 | x_1) \ldots p(x_5 | x_1, \ldots, x_4)$$

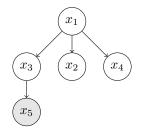


In (probabilistic) graphical models, a variable that depends on another one is connected to it with an arrow pointing to the dependent variable.

This model encodes the fact that

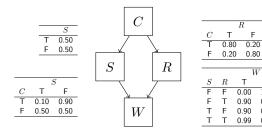
$$p(x_1, x_2, \dots, x_5) = p(x_1)p(x_2 | x_1) \dots p(x_5 | x_1, \dots, x_4)$$

= $p(x_1)p(x_2 | x_1)p(x_3 | x_1)p(x_4 | x_1)p(x_5 | x_3)$



Probabilistic graphical models

Example from [Pearl, 1988]: The sprinkler network



Random variables:

 \blacksquare C: Cloudy

F

W

F

1.00

0.10

0.10

0.01

- S: Sprinkler
- R: Rain
- W: Wet grass

RUB

Probabilistic graphical models

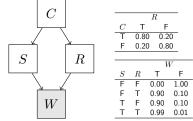
Example from [Pearl, 1988]: The sprinkler network

CRSF т 0.50 0.80 0.20 0.50 0.20 0.80 SRW SF RТ F F 0.00 1.00 0.90 т 0.90 0 10 W F 0.50 0.50 0.90 0.10 т 0.99 0.01

Random variables:

- \blacksquare C: Cloudy
- S: Sprinkler
- R: Rain
- W: Wet grass

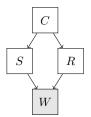
Using a given graphical model, finding values of queried nodes given observed nodes is termed inference.



Probabilistic graphical models

Example from [Pearl, 1988]: The sprinkler network

Question:

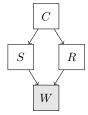


Probabilistic graphical models

Example from [Pearl, 1988]: The sprinkler network

Question:

$$P(S = T | W = T) = \frac{P(S = T, W = T)}{P(W = T)}$$



Probabilistic graphical models

Example from [Pearl, 1988]: The sprinkler network

Question:

$$P(S = T | W = T) = \frac{P(S = T, W = T)}{P(W = T)}$$

$$C = \frac{\sum_{\forall c, r} P(c, S = T, r, W = T)}{\sum_{\forall c, r, s} P(c, s, r, W = T)}$$

$$W$$

Probabilistic graphical models

Example from [Pearl, 1988]: The sprinkler network

Question:

$$P(S = \mathbf{T} | W = \mathbf{T}) = \frac{P(S = \mathbf{T}, W = \mathbf{T})}{P(W = \mathbf{T})}$$

$$= \frac{\sum_{\forall c, r} P(c, S = \mathbf{T}, r, W = \mathbf{T})}{\sum_{\forall c, r, s} P(c, s, r, W = \mathbf{T})}$$

$$S = \frac{P(S = \mathbf{T}, W = \mathbf{T})}{\sum_{\forall c, r, s} P(c, S = \mathbf{T}, r, W = \mathbf{T})}$$

$$W = \frac{\sum_{\forall c, r} P(c)P(S = \mathbf{T} | c)P(r | c)P(W = \mathbf{T} | S = \mathbf{T}, r)}{\sum_{\forall c, r, s} P(c)P(s | c)P(r | c)P(W = \mathbf{T} | s, r)}$$

Probabilistic graphical models

Example from [Pearl, 1988]: The sprinkler network

Question:

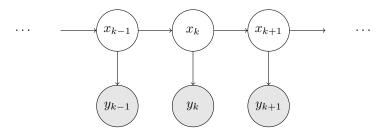
$$P(S = \mathbf{T} | W = \mathbf{T}) = \frac{P(S = \mathbf{T}, W = \mathbf{T})}{P(W = \mathbf{T})}$$

$$= \frac{\sum_{\forall c, r} P(c, S = \mathbf{T}, r, W = \mathbf{T})}{\sum_{\forall c, r, s} P(c, s, r, W = \mathbf{T})}$$

$$S = \frac{R}{R} = \frac{\sum_{\forall c, r} P(c)P(S = \mathbf{T} | c)P(r | c)P(W = \mathbf{T} | S = \mathbf{T}, r)}{\sum_{\forall c, r, s} P(c)P(s | c)P(r | c)P(W = \mathbf{T} | s, r)}$$

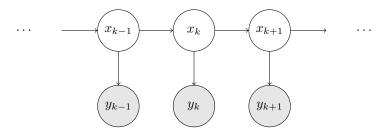
$$W = \frac{0.2781}{0.6471} \approx 0.43$$

In **temporal graphical models** (or **dynamic Bayesian networks**), temporal evolution is described by replicating the network over time. Temporal dependencies are explicitly denoted by introducing additional connections between nodes.



RUB

In **temporal graphical models** (or **dynamic Bayesian networks**), temporal evolution is described by replicating the network over time. Temporal dependencies are explicitly denoted by introducing additional connections between nodes.



Examples: Hidden Markov models, linear/nonlinear dynamical systems, ...

Probabilistic graphical models

(Problematic) characteristics of graphical models:

Local optima

- Graphical models of sufficient complexity may allow a number of different interpretations (each locally optimal).
- This may not be problematic, because it allows to drive the search into certain directions and the exploration of different hypotheses.

Probabilistic graphical models

(Problematic) characteristics of graphical models:

Local optima

- Graphical models of sufficient complexity may allow a number of different interpretations (each locally optimal).
- This may not be problematic, because it allows to drive the search into certain directions and the exploration of different hypotheses.

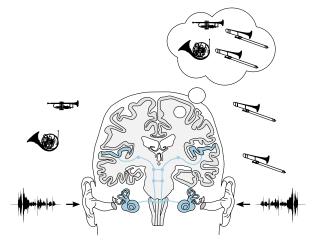
• Computing effort:

- Despite algorithmic progress, topologies exist where exact inference is NP-hard. Computational complexity may grow exponentially with the number of nodes in the network.
- Efficient algorithms for approximate inference in certain network topologies exist. Furthermore, heuristics to provide specific search directions (such as expert rules) may be applied.

RUB

Probabilistic graphical models

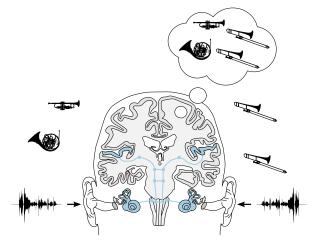
The role of graphical models in Two!Ears:



RUB

Probabilistic graphical models

The role of graphical models in Two!Ears:



audible state (observations) \longrightarrow hidden state (internal world model)

Example from [Schymura et al., 2014]: Sound source localization

Idea: Development of a proof-of-concept blackboard architecture, including

bottom-up signal processing using an auditory model,

Example from [Schymura et al., 2014]: Sound source localization

- bottom-up signal processing using an auditory model,
- a representation of the quantities of interest as random variables,

RUB

Example from [Schymura et al., 2014]: Sound source localization

- bottom-up signal processing using an auditory model,
- a representation of the quantities of interest as random variables,
- probabilistic inference to estimate the sound source position and

Example from [Schymura et al., 2014]: Sound source localization

- bottom-up signal processing using an auditory model,
- a representation of the quantities of interest as random variables,
- probabilistic inference to estimate the sound source position and
- top-down feedback mechanisms to improve localization performance:

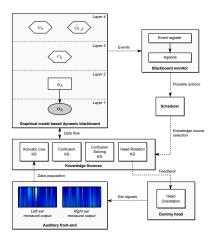
Example from [Schymura et al., 2014]: Sound source localization

- bottom-up signal processing using an auditory model,
- a representation of the quantities of interest as random variables,
- probabilistic inference to estimate the sound source position and
- top-down feedback mechanisms to improve localization performance:
 - front-back ambiguities may degrade localization [Blauert, 1997]

Example from [Schymura et al., 2014]: Sound source localization

- bottom-up signal processing using an auditory model,
- a representation of the quantities of interest as random variables,
- probabilistic inference to estimate the sound source position and
- top-down feedback mechanisms to improve localization performance:
 - front-back ambiguities may degrade localization [Blauert, 1997]
 - head rotations can help to reduce these ambiguities [Wallach, 1940]

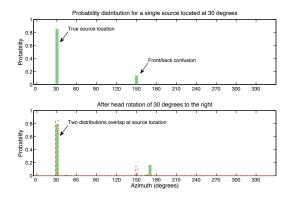
Example from [Schymura et al., 2014]: Sound source localization



RUB

Example from [Schymura et al., 2014]: Sound source localization

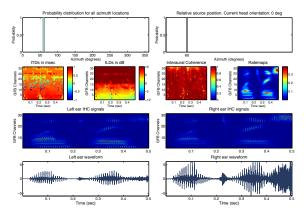
A simple heuristic to solve front-back ambiguities:



RUB

Example from [Schymura et al., 2014]: Sound source localization

Data representation at different blackboard layers:



Applications in Two!Ears

Watch the Two!Ears blackboard architecture in action:

- https://www.youtube.com/watch?v=GWKDiyjfY-4
- https://www.youtube.com/watch?v=flXSMy03pGg

Applications in Two!Ears

Watch the Two!Ears blackboard architecture in action:

- https://www.youtube.com/watch?v=GWKDiyjfY-4
- https://www.youtube.com/watch?v=flXSMy03pGg

More sophisticated models have already been developed in Two!Ears:

■ investigation of different head rotation approaches [Ma et al., 2015]

Applications in Two!Ears

Watch the Two!Ears blackboard architecture in action:

- https://www.youtube.com/watch?v=GWKDiyjfY-4
- https://www.youtube.com/watch?v=flXSMy03pGg

- investigation of different head rotation approaches [Ma et al., 2015]
- adding robustness via multi-conditional training [May et al., 2015]

Watch the Two!Ears blackboard architecture in action:

- https://www.youtube.com/watch?v=GWKDiyjfY-4
- https://www.youtube.com/watch?v=flXSMy03pGg

- investigation of different head rotation approaches [Ma et al., 2015]
- adding robustness via multi-conditional training [May et al., 2015]
- using deep neural networks for localization [Ma et al., 2015]

Watch the Two!Ears blackboard architecture in action:

- https://www.youtube.com/watch?v=GWKDiyjfY-4
- https://www.youtube.com/watch?v=flXSMy03pGg

- investigation of different head rotation approaches [Ma et al., 2015]
- adding robustness via multi-conditional training [May et al., 2015]
- using deep neural networks for localization [Ma et al., 2015]
- continuous head movements and tracking [Schymura et al., 2015]

Watch the Two!Ears blackboard architecture in action:

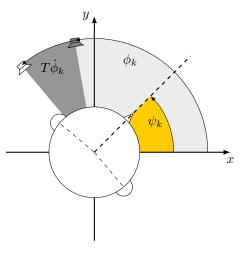
- https://www.youtube.com/watch?v=GWKDiyjfY-4
- https://www.youtube.com/watch?v=flXSMy03pGg

- investigation of different head rotation approaches [Ma et al., 2015]
- adding robustness via multi-conditional training [May et al., 2015]
- using deep neural networks for localization [Ma et al., 2015]
- continuous head movements and tracking [Schymura et al., 2015]

RUB

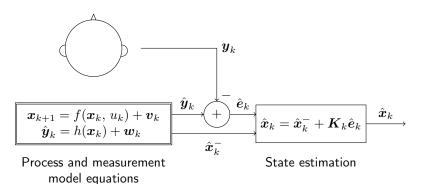
Applications in Two!Ears

Task: Tracking a moving sound source



Applications in Two!Ears

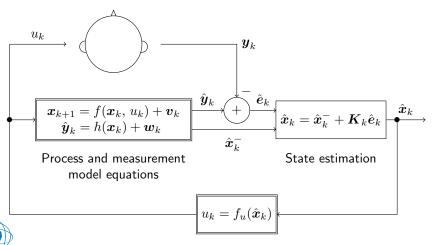
System overview:



Applications in Two!Ears

System overview:

TWO!EARS

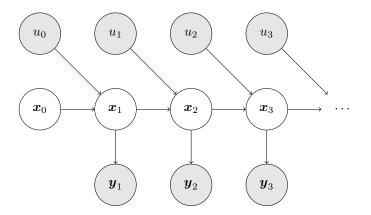


Controller

RUB

Applications in Two!Ears

State estimation as a temporal graphical model:



RUB

Applications in Two!Ears

State space:

$$\boldsymbol{x}_k = \begin{bmatrix} \phi_k & \dot{\phi}_k & \psi_k \end{bmatrix}^T$$

Applications in Two!Ears

State space:

$$\boldsymbol{x}_k = \begin{bmatrix} \phi_k & \dot{\phi}_k & \psi_k \end{bmatrix}^T$$

Process model:

$$\boldsymbol{x}_{k+1} = \begin{bmatrix} \phi_{k+1} \\ \phi_{k+1} \\ \psi_{k+1} \end{bmatrix} = \begin{bmatrix} \phi_k + T\dot{\phi}_k + v_{\phi,k} \\ \dot{\phi}_k + v_{\phi,k} \\ \operatorname{sat}(\psi_k + T\dot{\psi}_{\max}u_k, \psi_{\max}) + v_{\psi,k} \end{bmatrix}$$

Applications in Two!Ears

State space:

$$\boldsymbol{x}_k = \begin{bmatrix} \phi_k & \dot{\phi}_k & \psi_k \end{bmatrix}^T$$

Process model:

$$\boldsymbol{x}_{k+1} = \begin{bmatrix} \phi_{k+1} \\ \dot{\phi}_{k+1} \\ \psi_{k+1} \end{bmatrix} = \begin{bmatrix} \phi_k + T \dot{\phi}_k + v_{\phi,k} \\ \dot{\phi}_k + v_{\phi,k} \\ \operatorname{sat}(\psi_k + T \dot{\psi}_{\max} u_k, \psi_{\max}) + v_{\psi,k} \end{bmatrix}$$

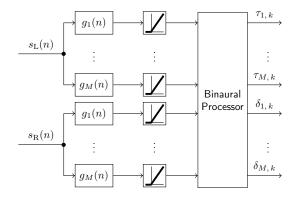
$$v_{\phi, k} \sim \mathcal{N}(0, \sigma_{\phi}^2), \ v_{\dot{\phi}, k} \sim \mathcal{N}(0, \sigma_{\dot{\phi}}^2), \ v_{\psi, k} \sim \mathcal{N}(0, \sigma_{\psi}^2)$$

 $\operatorname{sat}(x, x_{\max}) = \min(|x|, x_{\max}) \cdot \operatorname{sgn}(x), \quad u_k \in [-1, 1]$

RUB

Applications in Two!Ears

Binaural front-end:



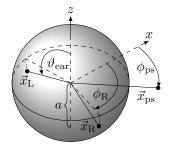
$$oldsymbol{y}_k = \left[au_{1,\,k}, \cdots, au_{M,\,k}, \, \delta_{1,\,k}, \cdots, \, \delta_{M,\,k}
ight]^T$$

RUB

Applications in Two!Ears

Spherical head model [Brungart, 1999], [Algazi et al., 2001]:

$$R_{i}(\boldsymbol{x}_{k},\omega) = \frac{c}{4\pi\omega a^{2}} \sum_{\nu=0}^{\infty} \frac{h_{\nu}\left(\frac{\omega}{c}d\right)}{h_{\nu}'\left(\frac{\omega}{c}a\right)} \left(2\nu+1\right) L_{\nu}\left(\sin(\vartheta_{\text{ear}})\cos\left(\phi_{k}-\psi_{k}-\phi_{i}\right)\right)$$
$$i \in \{\mathbf{R},\mathbf{L}\}$$

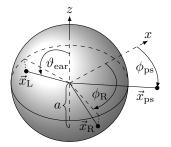


RUB

Applications in Two!Ears

Spherical head model [Brungart, 1999], [Algazi et al., 2001]:

$$R_{i}(\boldsymbol{x}_{k},\omega) = \frac{c}{4\pi\omega a^{2}} \sum_{\nu=0}^{\infty} \frac{h_{\nu}\left(\frac{\omega}{c}d\right)}{h_{\nu}'\left(\frac{\omega}{c}a\right)} \left(2\nu+1\right) L_{\nu}\left(\sin(\vartheta_{\text{ear}})\cos\left(\phi_{k}-\psi_{k}-\phi_{i}\right)\right)$$
$$i \in \{\mathbf{R},\mathbf{L}\}$$



Spherical head parameters [Algazi et al., 2001]:

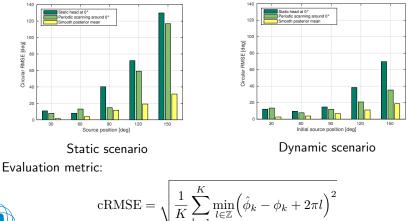
- Head radius *a*: 8.5 cm
- Ear's azimuth angle ϕ_i : 93.60°
- \blacksquare Ear's polar angle $\vartheta_{\rm ear}:~110.67^\circ$

Evaluation of three different head rotation strategies:

	No head rotation	Periodic sweeping	Smooth posterior mean
f_u	0	$\sin\left(2\pi k\frac{T}{T_{\rm p}}\right)$	$\left(\frac{ \phi_k - \psi_k }{1 + \phi_k - \psi_k }\right) \operatorname{sgn}\left(\phi_k - \psi_k\right)$
Туре	-	feed-forward	feedback

Applications in Two!Ears

Results from [Schymura et al., 2015]: Sound source localization and tracking



Summary

Combining blackboard architectures with probabilistic graphical models reveals interesting opportunities for further research in the field of active machine hearing.

Summary

- Combining blackboard architectures with probabilistic graphical models reveals interesting opportunities for further research in the field of active machine hearing.
- Some basic applications have been presented. Architectures that are able to deal with complex scenarios are currently under development.

Summary

- Combining blackboard architectures with probabilistic graphical models reveals interesting opportunities for further research in the field of active machine hearing.
- Some basic applications have been presented. Architectures that are able to deal with complex scenarios are currently under development.
- Next up: Practical session Localization and tracking of a moving sound source

Summary

- Combining blackboard architectures with probabilistic graphical models reveals interesting opportunities for further research in the field of active machine hearing.
- Some basic applications have been presented. Architectures that are able to deal with complex scenarios are currently under development.
- Next up: Practical session Localization and tracking of a moving sound source

Thank you for your attention!

Questions?

