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Introduction

What is a blackboard system?

© 2011 Anthony J. Bentley
https://commons.wikimedia.org/wiki/File:Blackboards_-_UNM_Astrophysics.jpg
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Introduction

Characteristics of blackboard systems [Corkill, 1991]:

� Independence of expertise
� Diversity in problem-solving techniques
� Flexible representation of blackboard information
� Common interaction language
� Event-based activation
� Need for control
� Incremental solution generation

How to put this into a computational framework?
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Introduction

Image taken from [Corkill, 1991]
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Introduction

Basic blackboard system components:

� Knowledge sources
• Independent (software) modules, designed to solve specific subtasks
• Can retrieve and write data from/to the blackboard
• May include additional knowledge (e.g. prior supervised training)
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Basic blackboard system components:

� Knowledge sources
• Independent (software) modules, designed to solve specific subtasks
• Can retrieve and write data from/to the blackboard
• May include additional knowledge (e.g. prior supervised training)

� Blackboard
• Global database, containing input data and partial solutions
• Arbitrary data representations (e.g. numerical, probabilistic, semantic)

� Control component (“Scheduler”)
• Determines order of knowledge source execution
• Keeps track of blackboard events and pending activations
• Different task-dependent implementations described in the literature
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Introduction

Example from [Nii, 1986]: Finding Koalas

Image taken from [Nii, 1986]
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Introduction

Areas where blackboard systems have been applied:

� Speech recognition [Erman et al., 1980]
� Circuit design and layout [Milzner, 1991]
� Process monitoring and control [Cord, 1994]
� Robotics [Tzafestas & Tzafestas, 1991]
� Distributed planning [Han et al., 2014]
� Wireless networks [Reddy et al, 2008]
� ...
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� a set of knowledge sources K = {κ1, . . . , κN},
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Blackboard basics

Formal definition: A blackboard system is composed of

� a set of knowledge sources K = {κ1, . . . , κN},
� a state-space Z describing the set of possible blackboard states,
� a set of events E = {ε1, . . . , εM} associated with specific state transitions,
� an agenda A describing the order of knowledge source execution and
� a scheduler f : εi 7→ α, εi ∈ E , α ∈ A.

9 / 34



Blackboard basics

A knowledge source κi comprises

� a mapping function fi : Xi → Yi, where
• Xi ⊆ Z is the set of possible inputs of knowledge source i and
• Yi ⊆ Z is the set of possible outputs of knowledge source i,

� a set of internal parameters λi (optional) and
� an associated importance weight wi (optional, system dependent).

y = fi(x, λi)
x ∈ Xi y ∈ Yi
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Blackboard basics

The blackboard serves as “memory” and solution space of the system. The
blackboard state is dynamically changing over time:

zt+1 = ht(zt), zt+1, zt ∈ Z
ht(zt) represents an action chosen by the scheduler at time instant t.
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The scheduler
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Blackboard basics

The scheduler

� maintains the order of knowledge source execution based on possible
actions listed in the current agenda at ∈ A and

� executes the knowledge source with the highest importance weight wi.

The scheduler is an attentional mechanism, allowing the allocation of
computational resources to tasks of particular interests in specific situations.

Alternative scheduling approaches exist (e.g. [Sutton et al, 2004]).
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Blackboard basics

Blackboard architecture used in Two!Ears:

Knowledge Sources

Knowledge

Source

Knowledge

Source
... Knowledge

Source

Knowledge

Source

Knowledge

Source

Blackboard

Layer 1

Layer 2

Layer n

...

Event register

Agenda

Blackboard monitor

Events

Scheduler

Possible actions

Knowledge source

selection and action

Data flow

Online documentation: http://twoears.aipa.tu-berlin.de/doc/latest/blackboard/
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Blackboard basics

Can blackboard systems be combined with modern statistical learning
approaches to solve complex tasks in field of active machine hearing?
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Probabilistic graphical models

In (probabilistic) graphical models, a variable that depends on another one is
connected to it with an arrow pointing to the dependent variable.

15 / 34



Probabilistic graphical models

In (probabilistic) graphical models, a variable that depends on another one is
connected to it with an arrow pointing to the dependent variable.

x1

x2x3 x4

x5

15 / 34



Probabilistic graphical models

In (probabilistic) graphical models, a variable that depends on another one is
connected to it with an arrow pointing to the dependent variable.

x1

x2x3 x4

x5

This model encodes the fact that

p(x1, x2, . . . , x5) = p(x1)p(x2 |x1) . . . p(x5 |x1, . . . , x4)

15 / 34



Probabilistic graphical models

In (probabilistic) graphical models, a variable that depends on another one is
connected to it with an arrow pointing to the dependent variable.

x1

x2x3 x4

x5

This model encodes the fact that

p(x1, x2, . . . , x5) = p(x1)p(x2 |x1) . . . p(x5 |x1, . . . , x4)
= p(x1)p(x2 |x1)p(x3 |x1)p(x4 |x1)p(x5 |x3)
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Probabilistic graphical models

Example from [Pearl, 1988]: The sprinkler network

C

S R

W

S
T 0.50
F 0.50

S
C T F
T 0.10 0.90
F 0.50 0.50

R
C T F
T 0.80 0.20
F 0.20 0.80

W
S R T F
F F 0.00 1.00
F T 0.90 0.10
T F 0.90 0.10
T T 0.99 0.01

Random variables:
� C: Cloudy
� S: Sprinkler
� R: Rain
� W : Wet grass
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F F 0.00 1.00
F T 0.90 0.10
T F 0.90 0.10
T T 0.99 0.01

Random variables:
� C: Cloudy
� S: Sprinkler
� R: Rain
� W : Wet grass

Using a given graphical model, finding values of queried nodes given observed
nodes is termed inference.
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Probabilistic graphical models

Example from [Pearl, 1988]: The sprinkler network

Question:
What is the probability that the sprinkler was on if the grass is wet?
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Probabilistic graphical models

Example from [Pearl, 1988]: The sprinkler network

Question:
What is the probability that the sprinkler was on if the grass is wet?

P (S = T |W = T) =
P (S = T, W = T)

P (W = T)

=

∑
∀ c, r P (c, S = T, r, W = T)∑
∀ c, r, s P (c, s, r, W = T)

=

∑
∀ c, r P (c)P (S = T | c)P (r | c)P (W = T |S = T, r)∑

∀ c, r, s P (c)P (s | c)P (r | c)P (W = T | s, r)

=
0.2781

0.6471
≈ 0.43
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Probabilistic graphical models

In temporal graphical models (or dynamic Bayesian networks), temporal
evolution is described by replicating the network over time. Temporal
dependencies are explicitly denoted by introducing additional connections
between nodes.

xk−1

yk−1

xk

yk

xk+1

yk+1

· · ·· · ·
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In temporal graphical models (or dynamic Bayesian networks), temporal
evolution is described by replicating the network over time. Temporal
dependencies are explicitly denoted by introducing additional connections
between nodes.

xk−1

yk−1

xk

yk

xk+1

yk+1

· · ·· · ·

Examples: Hidden Markov models, linear/nonlinear dynamical systems, ...

18 / 34



Probabilistic graphical models

(Problematic) characteristics of graphical models:

� Local optima
• Graphical models of sufficient complexity may allow a number of
different interpretations (each locally optimal).

• This may not be problematic, because it allows to drive the search
into certain directions and the exploration of different hypotheses.
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(Problematic) characteristics of graphical models:

� Local optima
• Graphical models of sufficient complexity may allow a number of
different interpretations (each locally optimal).

• This may not be problematic, because it allows to drive the search
into certain directions and the exploration of different hypotheses.

� Computing effort:
• Despite algorithmic progress, topologies exist where exact inference is
NP-hard. Computational complexity may grow exponentially with the
number of nodes in the network.

• Efficient algorithms for approximate inference in certain network
topologies exist. Furthermore, heuristics to provide specific search
directions (such as expert rules) may be applied.
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Probabilistic graphical models

The role of graphical models in Two!Ears:
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Probabilistic graphical models

The role of graphical models in Two!Ears:

audible state (observations) −→ hidden state (internal world model)
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Applications in Two!Ears

Example from [Schymura et al., 2014]: Sound source localization

Idea: Development of a proof-of-concept blackboard architecture, including

� bottom-up signal processing using an auditory model,
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Example from [Schymura et al., 2014]: Sound source localization

Idea: Development of a proof-of-concept blackboard architecture, including

� bottom-up signal processing using an auditory model,
� a representation of the quantities of interest as random variables,
� probabilistic inference to estimate the sound source position and
� top-down feedback mechanisms to improve localization performance:

• front-back ambiguities may degrade localization [Blauert, 1997]
• head rotations can help to reduce these ambiguities [Wallach, 1940]
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Applications in Two!Ears

Example from [Schymura et al., 2014]: Sound source localization

Knowledge Sources

Acoustic Cue
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Confusion

KS

Head Rotation

KS

Confusion

Solving

KS

Graphical model based dynamic blackboard

Layer 1

Layer 2

Layer 4

Event register

Agenda

Blackboard monitor

Data acquisition

Events

Scheduler

Possible actions

Knowledge source

selection

Auditory front-end

Left ear

monaural output

Right ear

monaural output

Layer 3

Data flow

Feedback

Dummy head

Head

Orientation
Ear signals
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Applications in Two!Ears

Example from [Schymura et al., 2014]: Sound source localization

A simple heuristic to solve front-back ambiguities:
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Applications in Two!Ears

Example from [Schymura et al., 2014]: Sound source localization

Data representation at different blackboard layers:
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Applications in Two!Ears

Watch the Two!Ears blackboard architecture in action:

� https://www.youtube.com/watch?v=GWKDiyjfY-4
� https://www.youtube.com/watch?v=flXSMy03pGg
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Applications in Two!Ears

Task: Tracking a moving sound source

x

y

ψk

φk
T φ̇k
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Applications in Two!Ears

System overview:

xk+1 = f(xk, uk) + vk
ŷk = h(xk) +wk

+
ŷk

yk

−

Process and measurement
model equations

x̂k = x̂−k +Kkêk

êk

x̂−k
State estimation

uk = g(x̂k)

x̂k

Controller

•

uk
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Applications in Two!Ears

State estimation as a temporal graphical model:

x0

u0

x1

u1

y1

x2

u2

y2

x3

u3

y3

· · ·
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Applications in Two!Ears

State space:
xk =

[
φk φ̇k ψk

]T
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State space:
xk =

[
φk φ̇k ψk

]T
Process model:

xk+1 =

φk+1

φ̇k+1

ψk+1

 =

 φk + T φ̇k + vφ, k
φ̇k + vφ̇, k

sat(ψk + T ψ̇maxuk, ψmax) + vψ, k



vφ, k ∼ N (0, σ2
φ), vφ̇, k ∼ N (0, σ2

φ̇
), vψ, k ∼ N (0, σ2

ψ)

sat(x, xmax) = min(|x|, xmax) · sgn(x), uk ∈ [−1, 1]
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Applications in Two!Ears

Binaural front-end:

...

g1(n)

gM (n)

...

g1(n)

gM (n)

sL(n)
•

sR(n)
•

...

...

Binaural
Processor

τ1, k

τM,k

...

δ1, k

δM,k

...

yk =
[
τ1, k, · · · , τM,k, δ1, k, · · · , δM,k

]T
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Applications in Two!Ears

Spherical head model [Brungart, 1999], [Algazi et al., 2001]:

Ri(xk, ω) =
c

4πωa2

∞∑
ν=0

hν
(
ω
c d
)

h′ν
(
ω
c a
) (2ν + 1)Lν

(
sin(ϑear) cos (φk − ψk − φi)

)
i ∈ {R, L}

a

~xL

ϑear

~xR

φR ~xps

φps

z

x
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x
Spherical head parameters [Algazi et al., 2001]:

� Head radius a: 8.5 cm
� Ear’s azimuth angle φi: 93.60◦

� Ear’s polar angle ϑear: 110.67◦
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Applications in Two!Ears

Evaluation of three different head rotation strategies:

No head rotation Periodic sweeping Smooth posterior mean

fu 0 sin
(
2πk T

Tp

) (
|φk−ψk|

1+|φk−ψk|

)
sgn
(
φk − ψk

)
Type - feed-forward feedback
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Applications in Two!Ears

Results from [Schymura et al., 2015]: Sound source localization and tracking

Source position [deg]
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Initial source position [deg]
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Dynamic scenario
Evaluation metric:

cRMSE =

√√√√ 1

K

K∑
k=1

min
l∈Z

(
φ̂k − φk + 2πl

)2
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Summary

� Combining blackboard architectures with probabilistic graphical models
reveals interesting opportunities for further research in the field of active
machine hearing.
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Summary

� Combining blackboard architectures with probabilistic graphical models
reveals interesting opportunities for further research in the field of active
machine hearing.

� Some basic applications have been presented. Architectures that are able
to deal with complex scenarios are currently under development.

� Next up: Practical session - Localization and tracking of a moving sound
source

Thank you for your attention!

Questions?
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